scholarly journals The actin-related protein Act3p of Saccharomyces cerevisiae is located in the nucleus.

1995 ◽  
Vol 6 (10) ◽  
pp. 1263-1270 ◽  
Author(s):  
V Weber ◽  
M Harata ◽  
H Hauser ◽  
U Wintersberger

Actin-related proteins, a group of protein families that exhibit about 50% sequence identity among each other and to conventional actin, have been found in a variety of eukaryotic organisms. In the budding yeast Saccharomyces cerevisiae, genes for one conventional actin (ACT1) and for three actin-related proteins (ACT2, ACT3, and ACT5) are known. ACT3, which we recently discovered, is an essential gene coding for a polypeptide of 489 amino acids (Act3p), with a calculated molecular mass of 54.8 kDa. Besides its homology to conventional actin, Act3p possesses a domain exhibiting weak similarity to the chromosomal protein HMG-14 as well as a potential nuclear localization signal. An antiserum prepared against a specific segment of the ACT3 gene product recognizes a polypeptide band of approximately 55 kDa in yeast extract. Indirect immunofluorescence experiments with this antiserum revealed that Act3p is located in the nucleus. Nuclear staining was observed in all cells regardless of the stage of the cell cycle. Independently, immunoblotting experiments with subcellular fractions showed that Act3p is indeed highly enriched in the nuclear fraction. We suggest that Act3p is an essential constituent of yeast chromatin.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.



1992 ◽  
Vol 12 (4) ◽  
pp. 1879-1892 ◽  
Author(s):  
J L Davis ◽  
R Kunisawa ◽  
J Thorner

Exposure of a haploid yeast cell to mating pheromone induces transcription of a set of genes. Induction is mediated through a cis-acting DNA sequence found upstream of all pheromone-responsive genes. Although the STE12 gene product binds specifically to this sequence element and is required for maximum levels of both basal and induced transcription, not all pheromone-responsive genes are regulated in an identical manner. To investigate whether additional factors may play a role in transcription of these genes, a genetic screen was used to identify mutants able to express pheromone-responsive genes constitutively in the absence of Ste12. In this way, we identified a recessive, single gene mutation (mot1, for modifier of transcription) which increases the basal level of expression of several, but not all, pheromone-responsive genes. The mot1-1 allele also relaxes the requirement for at least one other class of upstream activating sequence and enhances the expression of another gene not previously thought to be involved in the mating pathway. Cells carrying mot1-1 grow slowly at 30 degrees C and are inviable at 38 degrees C. The MOT1 gene was cloned by complementation of this temperature-sensitive lethality. Construction of a null allele confirmed that MOT1 is an essential gene. MOT1 residues on chromosome XVI and encodes a large protein of 1,867 amino acids which contains all seven of the conserved domains found in known and putative helicases. The product of MOT1 is strikingly homologous to the Saccharomyces cerevisiae SNF2/SW12 and RAD54 gene products over the entire helicase region.



2006 ◽  
Vol 34 (3) ◽  
pp. 359-362 ◽  
Author(s):  
S. Raychaudhuri ◽  
W.A. Prinz

The proper distribution of sterols among organelles is critical for numerous cellular functions. How sterols are sorted and moved among membranes remains poorly understood, but they are transported not only in vesicles but also by non-vesicular pathways. One of these pathways moves exogenous sterols from the plasma membrane to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae. We have found that two classes of proteins play critical roles in this transport, ABC transporters (ATP-binding-cassette transporters) and oxysterol-binding protein-related proteins. Transport is also regulated by phosphoinositides and the interactions of sterols with other lipids. Here, we summarize these findings and speculate on the role of non-vesicular sterol transfer in determining intracellular sterol distribution and membrane function.



1995 ◽  
Vol 128 (5) ◽  
pp. 749-760 ◽  
Author(s):  
A V Strunnikov ◽  
J Kingsbury ◽  
D Koshland

We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).



Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 595-609
Author(s):  
Hyung-Seo Hwang ◽  
Kiwon Song

Abstract During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Δ as well as in bub2Δ, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Δ, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Δ in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Δ and bfa1Δ. The mitotic arrest defects of ibd2Δ were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Δmad2Δ, ibd2Δbub2Δ, and ibd2Δdyn1Δ showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1.



2020 ◽  
Vol 21 (21) ◽  
pp. 7985
Author(s):  
Nobuo Fukuda

Sexual reproduction is almost a universal feature of eukaryotic organisms, which allows the reproduction of new organisms by combining the genetic information from two individuals of different sexes. Based on the mechanism of sexual reproduction, crossbreeding provides an attractive opportunity to improve the traits of animals, plants, and fungi. The budding yeast Saccharomyces cerevisiae has been widely utilized in fermentative production since ancient times. Currently it is still used for many essential biotechnological processes including the production of beer, wine, and biofuels. It is surprising that many yeast strains used in the industry exhibit low rates of sporulation resulting in limited crossbreeding efficiency. Here, I provide an overview of the recent findings about infertility challenges of yeasts domesticated for fermentation along with the progress in crossbreeding technologies. The aim of this review is to create an opportunity for future crossbreeding of yeasts used for fermentation.



Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Lyle O Ross ◽  
Susannah Rankin ◽  
Michèle F Shuster ◽  
Dean S Dawson

In most eukaryotic organisms, chiasmata, the connections formed between homologous chromosomes as a consequence of crossing over, are important for ensuring that the homologues move away from each other at meiosis I. Some organisms have the capacity to partition the rare homologues that have failed to experience reciprocal recombination. The yeast Saccharomyces cerevisiae is able to correctly partition achiasmate homologues with low fidelity by a mechanism that is largely unknown. It is possible to test which parameters affect the ability of achiasmate chromosomes to segregate by constructing strains that will have three achiasmate chromosomes at the time of meiosis. The meiotic partitioning of these chromosomes can be monitored to determine which ones segregate away from each other at meiosis I. This approach was used to test the influence of homologous yeast DNA sequences, recombination intiation sites, chromosome size and crossing over on the meiotic segregation of the model chromosomes. Chrome some size had no effect on achiasmate segregation. The influence of homologous yeast sequences on the segregation of noncrossover model chromosomes was negligible. In meioses in which two of the three model chromosomes experienced a crossover, they nearly always disjoined at meiosis I.



2008 ◽  
Vol 55 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Arkadiusz Miciałkiewicz ◽  
Anna Chełstowska

The Swc4p protein, encoded by an essential gene, is shared by two chromatin-remodeling complexes in Saccharomyces cerevisiae cells: NuA4 (nucleosome acetyltransferase of H4) and SWR1. The SWR1 complex catalyzes ATP-dependent exchange of the nucleosomal histone H2A for H2AZ (Htz1p). The activity of NuA4 is responsible mainly for the acetylation of the H4 histone but also for the acetylation of H2A and H2AZ. In this work we investigated the role of the Swc4p protein. Using random mutagenesis we isolated a collection of swc4 mutants and showed that the essential function of Swc4p resides in its N-terminal part, within the first 269 amino acids of the 476-amino acid-long protein. We also demonstrated that Swc4p is able to accommodate numerous mutations without losing its functionality under standard growth conditions. However, when swc4 mutants were exposed to methyl methanesulfonate (MMS), hydroxyurea or benomyl, severe growth deficiencies appeared, pointing to an involvement of Swc4p in many chromatin-based processes. The mutants' phenotypes did not result from an impairment of histone acetylation, as in the mutant which bears the shortest isolated variant of truncated Swc4p, the level of overall H4 acetylation was unchanged.



2005 ◽  
Vol 33 (3) ◽  
pp. 433-438 ◽  
Author(s):  
J.D. Beggs

Sm and Lsm proteins are ubiquitous in eukaryotes and form complexes that interact with RNAs involved in almost every cellular process. My laboratory has studied the Lsm proteins in the yeast Saccharomyces cerevisiae, identifying in the nucleus and cytoplasm distinct complexes that affect pre-mRNA splicing and degradation, small nucleolar RNA, tRNA processing, rRNA processing and mRNA degradation. These activities suggest RNA chaperone-like roles for Lsm proteins, affecting RNA–RNA and/or RNA–protein interactions. This article reviews the properties of the Sm and Lsm proteins and structurally and functionally related proteins in archaea and eubacteria.



Sign in / Sign up

Export Citation Format

Share Document