scholarly journals Targeted Comparative RNA Interference Analysis Reveals Differential Requirement of Genes Essential for Cell Proliferation

2006 ◽  
Vol 17 (11) ◽  
pp. 4837-4845 ◽  
Author(s):  
Yuichi J. Machida ◽  
Yuefeng Chen ◽  
Yuka Machida ◽  
Ankit Malhotra ◽  
Sukumar Sarkar ◽  
...  

Differences in the genetic and epigenetic make up of cell lines have been very useful for dissecting the roles of specific genes in the biology of a cell. Targeted comparative RNAi (TARCOR) analysis uses high throughput RNA interference (RNAi) against a targeted gene set and rigorous quantitation of the phenotype to identify genes with a differential requirement for proliferation between cell lines of different genetic backgrounds. To demonstrate the utility of such an analysis, we examined 257 growth-regulated genes in parallel in a breast epithelial cell line, MCF10A, and a prostate cancer cell line, PC3. Depletion of an unexpectedly high number of genes (25%) differentially affected proliferation of the two cell lines. Knockdown of many genes that spare PC3 (p53−) but inhibit MCF10A (p53+) proliferation induces p53 in MCF10A cells. EBNA1BP2, involved in ribosome biogenesis, is an example of such a gene, with its depletion arresting MCF10A at G1/S in a p53-dependent manner. TARCOR is thus useful for identifying cell type–specific genes and pathways involved in proliferation and also for exploring the heterogeneity of cell lines. In particular, our data emphasize the importance of considering the genetic status, when performing siRNA screens in mammalian cells.

2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


2020 ◽  
Vol 45 (4) ◽  
pp. 423-428
Author(s):  
Ali Mert Özgönül ◽  
Aycan Aşık ◽  
Burak Durmaz ◽  
Ramin Aslaminabad ◽  
Cumhur Gündüz ◽  
...  

AbstractObjectivesRecently, phenolic compounds (quercetin, kaempferol, ellagic acid (EA), and myricetin) as natural sources have been suggested to be used for treatment and chemoprevention of prostate cancer. Since rosehip includes the above molecules in high concentration, we set out to investigate possible anti-proliferative effect of rosehip tea on the prostate cancer cell line.MethodsThe flavonol content of rosehip tea prepared at different temperatures and time intervals was determined first and then the antiproliferative effect of tea samples was established by adding tea samples to the prostate cancer cell line (VCaP and LNCaP).ResultsQuercetin was more effective in LNCaP cell than in VCaP cell (IC50 = 20 and 200 μM, respectively). The boiled fruit shredded at minute 7 showed the highest levels of quercetin, EA and kaempferol and the boiled fruit at minute 7 had the highest levels of kaempferol and EA. The tea samples were prepared in concentrations relevant to their IC50 values, added to the VCaP and LNCaP cell lines. The antiproliferative effect of rosehip tea on VCaP cells was slightly greater than that of LNCaP cells.ConclusionEach of the flavonols exhibits an antiproliferative effect. Our data clearly indicated that rosehip as a natural source of all flavonols had an antiproliferative effect on androgen-sensitive prostate cancer. Now that it is important to use natural sources in cancer, rosehip seems to be a promising natural product to be used to treat the prostate illness.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3963-3963 ◽  
Author(s):  
Tyler Maclay ◽  
Joseph Vacca ◽  
Casey McComas ◽  
Alfredo Castro ◽  
Melinda Day ◽  
...  

Abstract We have developed CYT01B, a novel RAD51 inhibitor, that sensitizes cells to Activation Induced Cytidine Deaminase (AID) activity. In cancer cells, AID causes significant genotoxic stress through DNA replication fork damage, creating a dependency upon the homologous recombination repair factor, RAD51, for survival. CYT01B acts by destabilizing RAD51 focus formation, leading to its premature nuclear export and degradation. We have shown CYT01B to be effective in AID expressing cells, however, we had yet to address if inhibition of RAD51 could act as a sensitizer to current therapeutics. To determine potential drug combinations, a matrix study was performed with CYT01B (concentration range of 20nM to 5μM) and six different targeted agents or chemotherapeutics in three different cell lines: ARPE19/HPV16 (HPV immortalized normal epithelial cell line), KYSE-70 (head and neck cancer cell line) and Daudi (Burkitt's Lymphoma cell line). We then used the Bliss Independence model to determine drug interaction (synergistic, independent, or antagonistic). The compounds tested were the ATR inhibitor VE-822 (concentration range of 39nM to 2.5μM), the RPA inhibitor TDRL-505 (concentration range of 39nM to 5μM), the proteasome inhibitor Bortezomib (concentration range of 39nM to 2.5μM), Carboplatin (concentration range of 156nM to 10μM), and the PARP inhibitors Olaparib and Niraparib (concentration range of 78nM to 5μM). With VE-822 we observed synergy in the KYSE-70 cell line with ambiguous results in Daudi and ARPE19/HPV16. In ARPE19/HPV16 cell line, synergy was observed with CYT01B at 39nM with all concentrations of VE-822, but antagonistic activity was seen at the high and low concentrations. In Daudi, antagonism was observed at the highest concentrations of VE-822, but an additive effect was noted at the lower concentrations of VE-822. Antagonism was observed at all concentrations of CYT01B with TDRL-505 in both Daudi and ARPE19/HPV16. Weak synergy was observed in KYSE70 cells at 156 and 312nM CYT01B. CYT01B was synergistic with Bortezomib in ARPE19/HPV16 at all concentrations but was consistently antagonistic in KYSE-70 and Daudi. We observed synergy with carboplatin in all cell lines, with the effect consistent across the full concentration range in the cancer cell lines. Synergy was also observed consistently across the full concentration range in all three cell lines with both PARP inhibitors. However, Olaparib showed a stronger synergistic effect than Niraparib. These data suggest that CYT01B may be effective as a combinatorial therapy with platinum based chemotherapeutics and with PARP and ATR inhibitors. Overall, we conclude that there is significant potential for RAD51 inhibition to be used in future combination cancer treatment strategies and warrants further exploration in vivo. Disclosures Maclay: Cyteir Therapeutics: Employment. Vacca:Cyteir Therapeutics: Consultancy. McComas:Cyteir Therapeutics: Consultancy. Castro:Cyteir Therapeutics: Consultancy. Day:Cyteir Therapeutics: Employment. Mills:Cyteir Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1573
Author(s):  
Sevgi Koçyiğit Sevinç ◽  
Oya Orun ◽  
Pınar Mega Tiber ◽  
Pelin Çıkla-Süzgün ◽  
Ş. Güniz Küçükgüzel

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used as anti-inflammatory and analgesic agents. This family of drugs suppresses prostaglandin synthesis through inhibition of cyclooxygenase (COX) enzymes. Recent studies showed that anti-carcinogenic effects of these drugs are especially mediated by COX-2 enzyme. Etodolac is a COX-2 inhibitor and though not perfectly selective, it exhibits “preferential selectivity” for COX-2. In this study, the anti-proliferative and apoptotic effects of etodolac and its hydrazone or triazole derivatives (SGK 206 and SGK 242, respectively), were investigated on prostate cancer cell line PC-3 and human colorectal carcinoma cell line HT-29. Our data showed that SGK 206 and SGK 242 were more effective in the inhibition of proliferation and induction of apoptosis compared to etodolac in both cell lines.


2019 ◽  
Vol 70 (8) ◽  
pp. 2843-2846 ◽  
Author(s):  
Denisa Circioban ◽  
Ioana Zinuca Pavel ◽  
Adriana Ledeti ◽  
Ionut Ledeti ◽  
Corina Danciu ◽  
...  

Artemisinin is a sesquiterpene lactone with vastly proved anti-cancer effects and a low toxicity profile. However, the compound has poor water solubility, bioavailability and a short half-life. As such, the present paper aims to evaluate the cytotoxic effect on breast cells of three guest-host inclusion complexes containing artemisinin as the active compound and different cyclodextrins as hosts. These were tested using two different concentrations (i.e. 12.5 mM and 25 mM) and three cell lines, namely two human breast adenocarcinoma cell lines (MCF7 and MDA-MB-231) and one human non-tumorigenic breast epithelial cell line (MCF10A) employing the colorimetric microculture tetrazolium assay. After a 72h stimulation period, the most promising results were obtained for the complex containing artemisinin and Heptakis(2,3,6-tri-O-methyl)-b-cyclodextrin, the cell viability decrease being significant for the estrogen positive MCF7 cell line (80.0 � 2.3 %), making the complex a potential candidate for further in vivo testing.


Author(s):  
Shima Khajouee ◽  
Elham Baghbani ◽  
Ali Mohammadi ◽  
Behzad Mansoori ◽  
Dariush Shanehbandi ◽  
...  

Purpose: To investigate the downregulation of High Mobility Group AT-hook 2 (HMGA2) expression by small interfering RNAs (siRNAs) in PC3 prostate cancer cell line. HMGA2 belongs to the non-histone chromatin-binding protein family that serves as a crucial regulator of gene transcription. The overexpression of this gene is positively correlated with various prostate cancer-related properties. Thus, HMGA2 is an emerging target in prostate cancer treatment. This study aimed to examine the impact of siRNAs targeting HMGA2 on the viability, migration, and apoptosis processes of the PC3 prostate cancer cell line. Methods: siRNA transfection was conducted with a liposome-mediated approach. The mRNA and protein expression levels for HMGA2 are evaluated by qRT-PCR and western blot analysis. The cytotoxic properties of HMGA2-siRNA were measured by MTT assay on PC3 cells. The migration of PC3 cells was measured by implementing a wound-healing assay. Apoptosis measurement was also quantified by TUNEL assay. Results: Transfection with siRNA significantly decreased both mRNA and protein levels of the HMGA2 gene in a dose-dependent manner after 48 hours. Also, we demonstrated that the knockdown of HMGA2 led to a reduction in cell viability, migration ability, and enhanced apoptosis of PC3 cells in vitro. Conclusion: Our findings recommend that the specific siRNA of HMGA2 may efficiently be able to decrease prostate cancer progression. Therefore, it may be a promising adjuvant treatment in prostate cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Sina Darzi ◽  
Seyed Abbas Mirzaei ◽  
Fatemeh Elahian ◽  
Sadegh Shirian ◽  
Amir Peymani ◽  
...  

The capability of flavonoids in sensitizing cancer cells was demonstrated in numerous works to chemotherapy and converse multidrug resistance by modulating efflux pumps and apoptosis mechanisms. Three flavonoids, namely, bavachinin, tephrosin, and candidone, have been recently introduced to cancer treatment research presenting various activities, such as antibacterial, immunomodulatory, cell death, and anticancer. Less information exists regarding the therapeutic significance of these flavonoids in cancer treatment, especially in overcoming multidrug resistance (MDR). Here, we tempted to investigate the potency of these agents in reversing MDR by analyzing their effects as chemosensitizers on cell cytotoxicity, P-gp and ABCG2 protein expression levels, and their function on two multidrug-resistant cell lines, P-gp-overexpressing human gastric adenocarcinoma cell line (EPG85.257RDB) and ABCG2-overexpressing human epithelial breast cancer cell line (MCF7/MX). The inhibitory concentration of 10% (IC10) of bavachinin, tephrosin, and candidone in EPG85.257RDB cells was 1588.7 ± 202.2, 264.8 ± 86.15, and 1338.6 ± 114.11 nM, respectively. Moreover, these values in MCF7/MX cell were 2406.4 ± 257.63, 38.8 ± 4.28, and 27.9 ± 5.59 nM, respectively. Expression levels of ABCG2 and P-gp were not significantly downregulated by these flavonoids. Maximum levels of daunorubicin and mitoxantrone accumulations and minimum rates of drug efflux in both cell lines were detected 48 hrs posttreatment with tephrosin and bavachinin, respectively. Chemosensitization to mitoxantrone and daunorubicin treatments was, respectively, achieved in MCF7/MX and EPG85.257RDB cells in response to IC10 of bavachinin and tephrosin, independently. These effects did not follow time-dependent manner, and each flavonoid had its cell-dependent patterns. Overall, bavachinin, tephrosin, and candidone showed potency to sensitize MDR cells to daunorubicin and mitoxantrone and could be considered as attractive MDR modulators for cancer treatment. However, their action was time and cell specific.


Author(s):  
Irfan Cinar

Aim: The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to the effect of gossypin on cell proliferation and apoptosis of PC-3 cells. Methods: The effect of gossypin on cell viability was determined using MTT assay at (5-100 µg/ml) and cisplatin (50µM) in a time-dependent manner in PC-3 cell lines. The expression levels of caspase-3 (CASP3) and caspase-9 (CASP9) for apoptosis and Nuclear Factor Kappa B (NFKB1) for survival, inflammation, and growth were evaluated by real-time PCR. Hoechst staining was used to analyze apoptosis. Results: Gossypin showed an anti-proliferative effect on PC3 cell line in a time- and dose-dependent manner. In addition, gossypin led to a significant increase in apoptosis genes (CASP3, CASP9) when compared to control while it caused a reduce in the level of NFKB1, which is accepted as apoptosis inhibitor (p< 0.05) (cisplatin-like). Gossypin 50 and 100 μM significantly induced apoptotic mechanism in PC-3 cells. However, no apoptotic or commonly stained nuclei have been observed in control group cells. Conclusion: The results indicated that gossypin can be defined as a promising anticancer agent for PC-3 human prostate cancer cell line.


2008 ◽  
Vol 30 (2) ◽  
pp. 122-126 ◽  
Author(s):  
X. J. Shang ◽  
G. Yao ◽  
J. P. Ge ◽  
Y. Sun ◽  
W. H. Teng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document