Cytotoxic Activity Evaluation on Breast Cells of Guest-host Complexes Containing Artemisinin

2019 ◽  
Vol 70 (8) ◽  
pp. 2843-2846 ◽  
Author(s):  
Denisa Circioban ◽  
Ioana Zinuca Pavel ◽  
Adriana Ledeti ◽  
Ionut Ledeti ◽  
Corina Danciu ◽  
...  

Artemisinin is a sesquiterpene lactone with vastly proved anti-cancer effects and a low toxicity profile. However, the compound has poor water solubility, bioavailability and a short half-life. As such, the present paper aims to evaluate the cytotoxic effect on breast cells of three guest-host inclusion complexes containing artemisinin as the active compound and different cyclodextrins as hosts. These were tested using two different concentrations (i.e. 12.5 mM and 25 mM) and three cell lines, namely two human breast adenocarcinoma cell lines (MCF7 and MDA-MB-231) and one human non-tumorigenic breast epithelial cell line (MCF10A) employing the colorimetric microculture tetrazolium assay. After a 72h stimulation period, the most promising results were obtained for the complex containing artemisinin and Heptakis(2,3,6-tri-O-methyl)-b-cyclodextrin, the cell viability decrease being significant for the estrogen positive MCF7 cell line (80.0 � 2.3 %), making the complex a potential candidate for further in vivo testing.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1183
Author(s):  
Cecilia Spedalieri ◽  
Gergo Péter Szekeres ◽  
Stephan Werner ◽  
Peter Guttmann ◽  
Janina Kneipp

Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.


2006 ◽  
Vol 17 (11) ◽  
pp. 4837-4845 ◽  
Author(s):  
Yuichi J. Machida ◽  
Yuefeng Chen ◽  
Yuka Machida ◽  
Ankit Malhotra ◽  
Sukumar Sarkar ◽  
...  

Differences in the genetic and epigenetic make up of cell lines have been very useful for dissecting the roles of specific genes in the biology of a cell. Targeted comparative RNAi (TARCOR) analysis uses high throughput RNA interference (RNAi) against a targeted gene set and rigorous quantitation of the phenotype to identify genes with a differential requirement for proliferation between cell lines of different genetic backgrounds. To demonstrate the utility of such an analysis, we examined 257 growth-regulated genes in parallel in a breast epithelial cell line, MCF10A, and a prostate cancer cell line, PC3. Depletion of an unexpectedly high number of genes (25%) differentially affected proliferation of the two cell lines. Knockdown of many genes that spare PC3 (p53−) but inhibit MCF10A (p53+) proliferation induces p53 in MCF10A cells. EBNA1BP2, involved in ribosome biogenesis, is an example of such a gene, with its depletion arresting MCF10A at G1/S in a p53-dependent manner. TARCOR is thus useful for identifying cell type–specific genes and pathways involved in proliferation and also for exploring the heterogeneity of cell lines. In particular, our data emphasize the importance of considering the genetic status, when performing siRNA screens in mammalian cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3963-3963 ◽  
Author(s):  
Tyler Maclay ◽  
Joseph Vacca ◽  
Casey McComas ◽  
Alfredo Castro ◽  
Melinda Day ◽  
...  

Abstract We have developed CYT01B, a novel RAD51 inhibitor, that sensitizes cells to Activation Induced Cytidine Deaminase (AID) activity. In cancer cells, AID causes significant genotoxic stress through DNA replication fork damage, creating a dependency upon the homologous recombination repair factor, RAD51, for survival. CYT01B acts by destabilizing RAD51 focus formation, leading to its premature nuclear export and degradation. We have shown CYT01B to be effective in AID expressing cells, however, we had yet to address if inhibition of RAD51 could act as a sensitizer to current therapeutics. To determine potential drug combinations, a matrix study was performed with CYT01B (concentration range of 20nM to 5μM) and six different targeted agents or chemotherapeutics in three different cell lines: ARPE19/HPV16 (HPV immortalized normal epithelial cell line), KYSE-70 (head and neck cancer cell line) and Daudi (Burkitt's Lymphoma cell line). We then used the Bliss Independence model to determine drug interaction (synergistic, independent, or antagonistic). The compounds tested were the ATR inhibitor VE-822 (concentration range of 39nM to 2.5μM), the RPA inhibitor TDRL-505 (concentration range of 39nM to 5μM), the proteasome inhibitor Bortezomib (concentration range of 39nM to 2.5μM), Carboplatin (concentration range of 156nM to 10μM), and the PARP inhibitors Olaparib and Niraparib (concentration range of 78nM to 5μM). With VE-822 we observed synergy in the KYSE-70 cell line with ambiguous results in Daudi and ARPE19/HPV16. In ARPE19/HPV16 cell line, synergy was observed with CYT01B at 39nM with all concentrations of VE-822, but antagonistic activity was seen at the high and low concentrations. In Daudi, antagonism was observed at the highest concentrations of VE-822, but an additive effect was noted at the lower concentrations of VE-822. Antagonism was observed at all concentrations of CYT01B with TDRL-505 in both Daudi and ARPE19/HPV16. Weak synergy was observed in KYSE70 cells at 156 and 312nM CYT01B. CYT01B was synergistic with Bortezomib in ARPE19/HPV16 at all concentrations but was consistently antagonistic in KYSE-70 and Daudi. We observed synergy with carboplatin in all cell lines, with the effect consistent across the full concentration range in the cancer cell lines. Synergy was also observed consistently across the full concentration range in all three cell lines with both PARP inhibitors. However, Olaparib showed a stronger synergistic effect than Niraparib. These data suggest that CYT01B may be effective as a combinatorial therapy with platinum based chemotherapeutics and with PARP and ATR inhibitors. Overall, we conclude that there is significant potential for RAD51 inhibition to be used in future combination cancer treatment strategies and warrants further exploration in vivo. Disclosures Maclay: Cyteir Therapeutics: Employment. Vacca:Cyteir Therapeutics: Consultancy. McComas:Cyteir Therapeutics: Consultancy. Castro:Cyteir Therapeutics: Consultancy. Day:Cyteir Therapeutics: Employment. Mills:Cyteir Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Michelle Visagie ◽  
Thandi Mqoco ◽  
Anna Joubert

AbstractResearch into potential anticancer agents has shown that 2-methoxyestradiol exerts antiproliferative activity in vitro and in vivo in an estrogen receptor-independent manner. Due to its limited biological accessibility and rapid metabolic degradation, several new analogues have been developed in recent years. This study investigated the in vitro effects of a novel in silicodesigned compound (C16) in an estrogen receptor-positive breast adenocarcinoma epithelial cell line (MCF-7), an estrogen receptor-negative breast adenocarcinoma epithelial cell line (MDA-MB-231) and a nontumorigenic breast cell line (MCF-12A). Light microscopy revealed decreased cell density, cells blocked in metaphase and the presence of apoptotic characteristics in all three cell lines after exposure to C16 for 24 h. Polarizationoptical transmitted light differential interference contrast revealed the presence of several rounded cells and decreased cell density. The xCELLigence real-time label-independent approach revealed that C16 exerted antiproliferative activity. Significant inhibition of cell growth was demonstrated after 24 h of exposure to 0.2 μM C16 in all three cell lines. However, the non-tumorigenic MCF-12A cell line recovered extremely well after 48 h when compared to the tumorigenic cell lines. This indicates that C16 acts as an antiproliferative agent, possesses antimitotic activity and induces apoptosis in vitro. These features warrant further investigation.


2020 ◽  
Vol 17 ◽  
Author(s):  
Tarek Faris ◽  
Gamaleldin I. Harisa ◽  
Fars K. Alanazi ◽  
Mohamed M. Badran ◽  
Afraa Mohammad Alotaibi ◽  
...  

Aim: This study aimed to explore an affordable technique for the fabrication of Chitosan Nanoshuttles (CSNS) at the ultrafine nanoscale less than 100 nm with improved physicochemical properties, and cytotoxicity on the MCF-7 cell line. Background: Despite several studies reported that the antitumor effect of CS and CSNS could achieve intracellular compartment target ability, no enough available about this issue and further studies are required to address this assumption. Objectives: The objective of the current study was to investigate the potential processing variables for the production of ultrafine CSNS (> 100 nm) using Box-Benhken Design factorial design (BBD). This was achieved through a study of the effects of processing factors, such as CS concentration, CS/TPP ratio, and pH of the CS solution, on PS, PDI, and ZP. Moreover, the obtained CSNS was evaluated for physicochemical characteristics, morphology Also, hemocompatibility, and cytotoxicity using Red Blood Cells (RBCs) and MCF-7 cell lines were investigated. Methods: Box-Benhken Design factorial design (BBD) was used in the analysis of different selected variables. The effects of CS concentration, sodium tripolyphosphate (TPP) ratio, and pH on particle size, Polydispersity Index (PDI), and Zeta Potential (ZP) were measured. Subsequently, the prepared CS nanoshuttles were exposed to stability studies, physicochemical characterization, hemocompatibility, and cytotoxicity using red blood cells and MCF-7 cell lines as surrogate models for in vivo study. Result: The present results revealed that the optimized CSNS have ultrafine nanosize, (78.3±0.22 nm), homogenous with PDI (0.131±0.11), and ZP (31.9±0.25 mV). Moreover, CSNS have a spherical shape, amorphous in structure, and physically stable. Also, CSNS has biological safety as indicated by a gentle effect on red blood cell hemolysis, besides, the obtained nanoshuttles decrease MCF-7 viability. Conclusion: The present findings concluded that the developed ultrafine CSNS has unique properties with enhanced cytotoxicity. thus promising for use in intracellular organelles drug delivery.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


1992 ◽  
Vol 20 (2) ◽  
pp. 218-221
Author(s):  
Henning F. Bjerregaard

An established epithelial cell line (A6) from a South African clawed toad (Xenopus laevis) kidney was used as a model for the corneal epithelium of the eye in order to determine ocular irritancy. When grown on Millipore filter inserts, A6 cells form a monolayer epithelium of high electrical resistance and generate a trans-epithelial potential difference. These two easily-measured electrophysiological endpoints showed a dose-related decrease after exposure for 24 hours to seven selected chemicals of different ocular irritancy potential. It was demonstrated that both trans-epithelial resistance and potential ranked closely with in vivo eye irritancy data and correlated well (r = 0.96) with loss of trans-epithelial impermeability of Madin-Darby canine kidney (MDCK) cells, detected by use of a fluorescein leakage assay.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. Methods qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. Results circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. Conclusion Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


2011 ◽  
Vol 77 (9) ◽  
pp. 3023-3034 ◽  
Author(s):  
Ya-Jie Tang ◽  
Wei Zhao ◽  
Hong-Mei Li

ABSTRACTAccording to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position byGibberella fujikuroiSH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position byAlternaria alternataS-f6, which was screened out from the gatheredDysosma versipellisplants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) byAlternaria alternataS-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., logP= 0.34), the water solubility of 4-TMP-DMEP (i.e., logP= 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.


Sign in / Sign up

Export Citation Format

Share Document