scholarly journals Phospholipase C Regulation of Phosphatidylinositol 3,4,5-trisphosphate-mediated Chemotaxis

2007 ◽  
Vol 18 (12) ◽  
pp. 4772-4779 ◽  
Author(s):  
Arjan Kortholt ◽  
Jason S. King ◽  
Ineke Keizer-Gunnink ◽  
Adrian J. Harwood ◽  
Peter J.M. Van Haastert

Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P3 on the membrane nearest the polarizing signal and PI(3,4,5)P3 dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P2, could have important consequences for PI(3,4,5)P3 localization. We investigate the role of PLC in PI(3,4,5)P3-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P3 after cAMP stimulation, as monitored by the PI(3,4,5)P3-specific pleckstrin homology (PH)-domain of CRAC (PHCRACGFP). In contrast, PLC overexpression elevates PI(3,4,5)P3 and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P3 gradient.

Author(s):  
Annu Makker ◽  
Madhu Mati Goel ◽  
Kumari Manu ◽  
Renu Makker

Background: Balance between endometrial cell proliferation and apoptosis is crucial for successful embryo implantation. PTEN (phosphatase and tensin homolog deleted on chromosome 10), a pro-apoptotic factor, is proposed to be one of the signaling proteins through which estrogen and progesterone act to affect cellular homeostasis. Although reports in literature have suggested role of PTEN in regulating endometrial cell proliferation and apoptosis during window of implantation, its involvement in women with unexplained infertility is not clear. In the present study, we examined expression, cellular distribution and activation status of PTEN, cell proliferation, and apoptosis in midsecretory endometrium from women with unexplained infertility as compared to fertile controls.Methods: Endometrial biopsies from infertile (n=11) and fertile women (n=22) were used for immunohistochemical evaluation of PTEN, phospho-PTEN and Ki67. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay was performed for detection of apoptotic cells.Results: Biopsies from infertile women as compared to fertile controls demonstrated statistically significant: i) decrease in nuclear PTEN (P < 0.001), increase in nuclear phospho-PTEN (P < 0.05), increase in nuclear and cytoplasmic phospho-PTEN/PTEN ratio (P < 0.001 and P < 0.05 respectively) in endometrial stroma, ii) increase in cytoplasmic phospho-PTEN (P < 0.001) and phospho-PTEN/PTEN ratio (P < 0.05) in glandular epithelium (GE), iii) increase in Ki67 labeling in GE (P < 0.01) and stroma (P < 0.05) and, iv) decrease in (P < 0.001) apoptosis.Conclusions: Altered PTEN expression and associated modulation in cellular homeostasis during the implantation window might contribute to mechanism underlying unexplained infertility.


2014 ◽  
Vol 63 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Junxia Zhang ◽  
Haiwei Wang ◽  
Lijun Zhang ◽  
Tengteng Zhang ◽  
Beibei Wang ◽  
...  

Chlamydia pneumoniae infection has been shown to be associated with the development of atherosclerosis by promoting the migration of vascular smooth muscle cells (VSMCs). However, how C. pneumoniae infection induces VSMC migration is not fully understood. A primary role of Ras-related C3 botulinum toxin substrate 1 (Rac1) is to generate a protrusive force at the leading edge that contributes to cell migration. Whether Rac1 activation plays a role in C. pneumoniae infection-induced VSMC migration is not well defined. In the present study, we therefore examined Rac1 activation in C. pneumoniae-infected rat primary VSMCs and the role of Rac1 activation in C. pneumoniae infection-induced VSMC migration. Glutathione S-transferase pull-down assay results showed that Rac1 was activated in C. pneumoniae-infected rat primary VSMCs. A Rac1 inhibitor, NSC23766 (50 µM,) suppressed Rac1 activation stimulated by C. pneumoniae infection, and thereby inhibited C. pneumoniae infection-induced VSMC migration. In addition, C. pneumoniae infection-induced Rac1 activation in the VSMCs was blocked by LY294002 (25 µM), an inhibitor of phosphatidylinositol 3-kinase (PI3K). Taken together, these data suggest that C. pneumoniae infection promotes VSMC migration, possibly through activating Rac1 via PI3K.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769552 ◽  
Author(s):  
Ebubekir Dirican ◽  
Mustafa Akkiprik

Breast cancer is the most commonly diagnosed cancer among women in Turkey and worldwide. It is considered a heterogeneous disease and has different subtypes. Moreover, breast cancer has different molecular characteristics, behaviors, and responses to treatment. Advances in the understanding of the molecular mechanisms implicated in breast cancer progression have led to the identification of many potential therapeutic gene targets, such as Breast Cancer 1/2, phosphatidylinositol 3-kinase catalytic subunit alpha, and tumor protein 53. The aim of this review is to summarize the roles of phosphatidylinositol 3-kinase regulatory subunit 1 (alpha) (alias p85α) and phosphatase and tensin homolog in breast cancer progression and the molecular mechanisms involved. Phosphatase and tensin homolog is a tumor suppressor gene and protein. Phosphatase and tensin homolog antagonizes the phosphatidylinositol 3-kinase/AKT signaling pathway that plays a key role in cell growth, differentiation, and survival. Loss of phosphatase and tensin homolog expression, detected in about 20%–30% of cases, is known to be one of the most common tumor changes leading to phosphatidylinositol 3-kinase pathway activation in breast cancer. Instead, the regulatory subunit p85α is a significant component of the phosphatidylinositol 3-kinase pathway, and it has been proposed that a reduction in p85α protein would lead to decreased negative regulation of phosphatidylinositol 3-kinase and hyperactivation of the phosphatidylinositol 3-kinase pathway. Phosphatidylinositol 3-kinase regulatory subunit 1 protein has also been reported to be a positive regulator of phosphatase and tensin homolog via the stabilization of this protein. A functional genetic alteration of phosphatidylinositol 3-kinase regulatory subunit 1 that results in reduced p85α protein expression and increased insulin receptor substrate 1 binding would lead to enhanced phosphatidylinositol 3-kinase signaling and hence cancer development. Phosphatidylinositol 3-kinase regulatory subunit 1 underexpression was observed in 61.8% of breast cancer samples. Therefore, expression/alternations of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog genes have crucial roles for breast cancer progression. This review will summarize the biological roles of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog in breast cancer, with an emphasis on recent findings and the potential of phosphatidylinositol 3-kinase regulatory subunit 1 and phosphatase and tensin homolog as a therapeutic target for breast cancer therapy.


2013 ◽  
Vol 49 (3) ◽  
pp. 307-313 ◽  
Author(s):  
B. O. Cetinkaya ◽  
F. Pamuk ◽  
G. C. Keles ◽  
B. Ayas ◽  
G. K. Ozfidan ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 2129 ◽  
Author(s):  
Anja Weber ◽  
Helmut Klocker ◽  
Herbert Oberacher ◽  
Erich Gnaiger ◽  
Hannes Neuwirt ◽  
...  

The idea of using metabolic aberrations as targets for diagnosis or therapeutic intervention has recently gained increasing interest. In a previous study, our group discovered intriguing differences in the oxidative mitochondrial respiration capacity of benign and prostate cancer (PCa) cells. In particular, we found that PCa cells had a higher total respiratory activity than benign cells. Moreover, PCa cells showed a substantial shift towards succinate-supported mitochondrial respiration compared to benign cells, indicating a re-programming of respiratory control. This study aimed to investigate the role of succinate and its main plasma membrane transporter NaDC3 (sodium-dependent dicarboxylate transporter member 3) in PCa cells and to determine whether targeting succinate metabolism can be potentially used to inhibit PCa cell growth. Using high-resolution respirometry analysis, we observed that ROUTINE respiration in viable cells and succinate-supported respiration in permeabilized cells was higher in cells lacking the tumor suppressor phosphatase and tensin-homolog deleted on chromosome 10 (PTEN), which is frequently lost in PCa. In addition, loss of PTEN was associated with increased intracellular succinate accumulation and higher expression of NaDC3. However, siRNA-mediated knockdown of NaDC3 only moderately influenced succinate metabolism and did not affect PCa cell growth. By contrast, mersalyl acid—a broad acting inhibitor of dicarboxylic acid carriers—strongly interfered with intracellular succinate levels and resulted in reduced numbers of PCa cells. These findings suggest that blocking NaDC3 alone is insufficient to intervene with altered succinate metabolism associated with PCa. In conclusion, our data provide evidence that loss of PTEN is associated with increased succinate accumulation and enhanced succinate-supported respiration, which cannot be overcome by inhibiting the succinate transporter NaDC3 alone.


2019 ◽  
Vol 316 (1) ◽  
pp. H61-H69 ◽  
Author(s):  
Wenbo Yang ◽  
Zhijun Wu ◽  
Ke Yang ◽  
Yanxin Han ◽  
Yanjia Chen ◽  
...  

Cardiac fibrosis has been known to play an important role in the etiology of heart failure after myocardial infarction (MI). B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a transcriptional repressor, is important for fibrogenesis in the kidneys. However, the effect of BMI1 on ischemia-induced cardiac fibrosis remains unclear. BMI1 was strongly expressed in the infarct region 1 wk post-MI in mice and was detected by Western blot and histological analyses. Lentivirus-mediated overexpression of BMI1 significantly promoted cardiac fibrosis, worsened cardiac function 4 wk after the intervention in vivo, and enhanced the proliferation and migration capabilities of fibroblasts in vitro , whereas downregulation of BMI1 decreased cardiac fibrosis and prevented cardiac dysfunction in mice 4 wk post-MI in vivo. Furthermore, upregulated BMI1 inhibited phosphatase and tensin homolog (PTEN) expression, enhanced phosphatidylinositol 3-kinase (PI3K) expression, and increased the phosphorylation level of Akt and mammalian target of rapamycin (mTOR) in mice 4 wk after lentiviral infection, which was in accordance with the changes seen in their infarcted myocardial tissues. At the same time, the effects of BMI1 on cardiac fibroblasts were reversed in vitro when these cells were exposed to NVP-BEZ235, a dual-kinase (PI3K/mTOR) inhibitor. In conclusion, BMI1 is associated with cardiac fibrosis and dysfunction after MI by regulating cardiac fibroblast proliferation and migration, and these effects could be partially explained by the regulation of the PTEN-PI3K/Akt-mTOR pathway. NEW & NOTEWORTHY Ischemia-induced B lymphoma Mo-MLV insertion region 1 homolog (BMI1) significantly promoted cardiac fibrosis and worsened cardiac function in vivo, whereas downregulation of BMI1 decreased cardiac fibrosis and prevented cardiac dysfunction in myocardial infarcted mice. BMI1 also enhanced proliferation and migration capabilities of fibroblasts in vitro; these effects were reversed by NVP-BEZ235. Effects of BMI1 on cardiac fibrosis could be partially explained by regulation of the phosphatase and tensin homolog-phosphatidylinositol 3-kinase/Akt-mammalian target of rapamycin pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Stéphane Rodriguez ◽  
Uyen Huynh-Do

During the past 20 years, the phosphatase and tensin homolog PTEN has been shown to be involved in major physiological processes, and its mutation or loss is often associated with tumor formation. In addition PTEN regulates angiogenesis not only through its antagonizing effect on the PI3 kinase pathway mainly, but also through some phosphatase-independent functions. In this paper we delineate the role of this powerful tumor suppressor in tumor angiogenesis and dissect the underlying molecular mechanisms. Furthermore, it appears that, in a number of cancers, the PTEN status determines the response to chemotherapy, highlighting the need to monitor PTEN expression and to develop PTEN-targeted therapies.


2018 ◽  
Vol 314 (6) ◽  
pp. F1096-F1107 ◽  
Author(s):  
Huizhen Wang ◽  
Ziwei Feng ◽  
Jianteng Xie ◽  
Feng Wen ◽  
Menglei Jv ◽  
...  

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has proven to be downregulated in podocytes challenged with high glucose (HG), and knockout of PTEN in podocytes aggravated the progression of diabetic kidney disease (DKD). However, whether podocyte-specific knockin of PTEN protects the kidney against hyperglycemia in vivo remains unknown. The inducible podocyte-specific PTEN knockin (PPKI) mice were generated by crossing newly created transgenic loxP-stop- loxP-PTEN mice with podocin-iCreERT2 mice. Diabetes mellitus was induced in mice by intraperitoneal injection of streptozotocin at a dose of 150 mg/kg. In vitro, small interfering RNA and adenovirus interference were used to observe the role of PTEN in HG-treated podocytes. Our data demonstrated that PTEN was markedly reduced in the podocytes of patients with DKD and focal segmental glomerulosclerosis, as well as in those of db/db mice. Interestingly, podocyte-specific knockin of PTEN significantly alleviated albuminuria, mesangial matrix expansion, effacement of podocyte foot processes, and incrassation of glomerular basement membrane in diabetic PPKI mice compared with wild-type diabetic mice, whereas no alteration was observed in the level of blood glucose. The potential renal protection of overexpressed PTEN in podocytes was partly attributed with an improvement in autophagy and motility and the inhibition of apoptosis. Our results showed that podocyte-specific knockin of PTEN protected the kidney against hyperglycemia in vivo , suggesting that targeting PTEN might be a novel and promising therapeutic strategy against DKD.


Sign in / Sign up

Export Citation Format

Share Document