scholarly journals GRASP and IPCEF Promote ARF-to-Rac Signaling and Cell Migration by Coordinating the Association of ARNO/cytohesin 2 with Dock180

2010 ◽  
Vol 21 (4) ◽  
pp. 562-571 ◽  
Author(s):  
David T. White ◽  
Katie M. McShea ◽  
Myriam A. Attar ◽  
Lorraine C. Santy

ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.

Biology ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 403
Author(s):  
Maureen C. Lamb ◽  
Tina L. Tootle

Fascin, an actin-binding protein, regulates many developmental migrations and contributes to cancer metastasis. Specifically, Fascin promotes cell motility, invasion, and adhesion by forming filopodia and invadopodia through its canonical actin bundling function. In addition to bundling actin, Fascin has non-canonical roles in the cell that are thought to promote cell migration. These non-canonical functions include regulating the activity of other actin-binding proteins, binding to and regulating microtubules, mediating mechanotransduction to the nucleus via interaction with the Linker of the Nucleoskeleton and Cytoskeleton (LINC) Complex, and localizing to the nucleus to regulate nuclear actin, the nucleolus, and chromatin modifications. The many functions of Fascin must be coordinately regulated to control cell migration. While much remains to be learned about such mechanisms, Fascin is regulated by post-translational modifications, prostaglandin signaling, protein–protein interactions, and transcriptional means. Here, we review the structure of Fascin, the various functions of Fascin and how they contribute to cell migration, the mechanisms regulating Fascin, and how Fascin contributes to diseases, specifically cancer metastasis.


2021 ◽  
Author(s):  
Jean-Patrick Parisien ◽  
Jessica J Lenoir ◽  
Gloria Alvarado ◽  
Curt M Horvath

The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers including the type I and type III IFN antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN stimulated gene transcription factor, ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response, and identifies new targets for antiviral therapeutic approaches.


2019 ◽  
Vol 19 (6) ◽  
pp. 430-448 ◽  
Author(s):  
Khalid Bashir Dar ◽  
Aashiq Hussain Bhat ◽  
Shajrul Amin ◽  
Syed Anjum ◽  
Bilal Ahmad Reshi ◽  
...  

Protein-Protein Interactions (PPIs) drive major signalling cascades and play critical role in cell proliferation, apoptosis, angiogenesis and trafficking. Deregulated PPIs are implicated in multiple malignancies and represent the critical targets for treating cancer. Herein, we discuss the key protein-protein interacting domains implicated in cancer notably PDZ, SH2, SH3, LIM, PTB, SAM and PH. These domains are present in numerous enzymes/kinases, growth factors, transcription factors, adaptor proteins, receptors and scaffolding proteins and thus represent essential sites for targeting cancer. This review explores the candidature of various proteins involved in cellular trafficking (small GTPases, molecular motors, matrix-degrading enzymes, integrin), transcription (p53, cMyc), signalling (membrane receptor proteins), angiogenesis (VEGFs) and apoptosis (BCL-2family), which could possibly serve as targets for developing effective anti-cancer regimen. Interactions between Ras/Raf; X-linked inhibitor of apoptosis protein (XIAP)/second mitochondria-derived activator of caspases (Smac/DIABLO); Frizzled (FRZ)/Dishevelled (DVL) protein; beta-catenin/T Cell Factor (TCF) have also been studied as prospective anticancer targets. Efficacy of diverse molecules/ drugs targeting such PPIs although evaluated in various animal models/cell lines, there is an essential need for human-based clinical trials. Therapeutic strategies like the use of biologicals, high throughput screening (HTS) and fragment-based technology could play an imperative role in designing cancer therapeutics. Moreover, bioinformatic/computational strategies based on genome sequence, protein sequence/structure and domain data could serve as competent tools for predicting PPIs. Exploring hot spots in proteomic networks represents another approach for developing targetspecific therapeutics. Overall, this review lays emphasis on a productive amalgamation of proteomics, genomics, biochemistry, and molecular dynamics for successful treatment of cancer.


2012 ◽  
Vol 23 (19) ◽  
pp. 3911-3922 ◽  
Author(s):  
Yongqiang Wang ◽  
Xinlei Zhang ◽  
Hong Zhang ◽  
Yi Lu ◽  
Haolong Huang ◽  
...  

The highly abundant α-helical coiled-coil motif not only mediates crucial protein–protein interactions in the cell but is also an attractive scaffold in synthetic biology and material science and a potential target for disease intervention. Therefore a systematic understanding of the coiled-coil interactions (CCIs) at the organismal level would help unravel the full spectrum of the biological function of this interaction motif and facilitate its application in therapeutics. We report the first identified genome-wide CCI network in Saccharomyces cerevisiae, which consists of 3495 pair-wise interactions among 598 predicted coiled-coil regions. Computational analysis revealed that the CCI network is specifically and functionally organized and extensively involved in the organization of cell machinery. We further show that CCIs play a critical role in the assembly of the kinetochore, and disruption of the CCI network leads to defects in kinetochore assembly and cell division. The CCI network identified in this study is a valuable resource for systematic characterization of coiled coils in the shaping and regulation of a host of cellular machineries and provides a basis for the utilization of coiled coils as domain-based probes for network perturbation and pharmacological applications.


2009 ◽  
Vol 284 (24) ◽  
pp. 16369-16376 ◽  
Author(s):  
Xuebo Hu ◽  
Sungkwon Kang ◽  
Xiaoyue Chen ◽  
Charles B. Shoemaker ◽  
Moonsoo M. Jin

A quantitative in vivo method for detecting protein-protein interactions will enhance our understanding of protein interaction networks and facilitate affinity maturation as well as designing new interaction pairs. We have developed a novel platform, dubbed “yeast surface two-hybrid (YS2H),” to enable a quantitative measurement of pairwise protein interactions via the secretory pathway by expressing one protein (bait) anchored to the cell wall and the other (prey) in soluble form. In YS2H, the prey is released either outside of the cells or remains on the cell surface by virtue of its binding to the bait. The strength of their interaction is measured by antibody binding to the epitope tag appended to the prey or direct readout of split green fluorescence protein (GFP) complementation. When two α-helices forming coiled coils were expressed as a pair of prey and bait, the amount of the prey in complex with the bait progressively decreased as the affinity changes from 100 pm to 10 μm. With GFP complementation assay, we were able to discriminate a 6-log difference in binding affinities in the range of 100 pm to 100 μm. The affinity estimated from the level of antibody binding to fusion tags was in good agreement with that measured in solution using a surface plasmon resonance technique. In contrast, the level of GFP complementation linearly increased with the on-rate of coiled coil interactions, likely because of the irreversible nature of GFP reconstitution. Furthermore, we demonstrate the use of YS2H in exploring the nature of antigen recognition by antibodies and activation allostery in integrins and in isolating heavy chain-only antibodies against botulinum neurotoxin.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


2004 ◽  
Vol 32 (6) ◽  
pp. 1110-1112 ◽  
Author(s):  
B.L. Lua ◽  
B.C. Low

Cells undergo dynamic changes in morphology or motility during cellular division and proliferation, differentiation, neuronal pathfinding, wound healing, apoptosis, host defense and organ development. These processes are controlled by signalling events relayed through cascades of protein interactions leading to the establishment and maintenance of cytoskeletal networks of microtubules and actin. Various regulators, including the Rho small GTPases (guanine nucleotide triphosphatases), serve as master switches to fine-tune the amplitude, duration as well as the integration of such circuitry responses. Rho GTPases are activated by guanine nucleotide-exchange factors and inactivated by GAPs (GTPase-activating proteins). Although normally down-regulating signalling pathways by catalysing their GTPase activity, many GAPs exist with various protein modules, the functions of which still largely remain unknown. BPGAP1 is a novel RhoGAP that co-ordinately regulates pseudopodia and cell migration through the interplay of its BNIP-2 and Cdc42GAP homology domains serving as a homophilic/heterophilic interaction device, an enzymic RhoGAP domain that inactivates RhoA and a proline-rich region that binds the Src homology-3 domain of cortactin. Both proteins co-localize to cell periphery and enhance cell migration. As a molecular scaffold in cortical actin assembly and organization, cortactin and its interaction with small GTPases, GAPs and tyrosine kinases seems set to provide further insights to the multiplicity and complexity of cell dynamics control. Elucidating how these processes might be individually or co-ordinately regulated through cortactin remains an exciting future challenge.


Inorganics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 85 ◽  
Author(s):  
Yap Shing Nim ◽  
Kam-Bo Wong

Maturation of urease involves post-translational insertion of nickel ions to form an active site with a carbamylated lysine ligand and is assisted by urease accessory proteins UreD, UreE, UreF and UreG. Here, we review our current understandings on how these urease accessory proteins facilitate the urease maturation. The urease maturation pathway involves the transfer of Ni2+ from UreE → UreG → UreF/UreD → urease. To avoid the release of the toxic metal to the cytoplasm, Ni2+ is transferred from one urease accessory protein to another through specific protein–protein interactions. One central theme depicts the role of guanosine triphosphate (GTP) binding/hydrolysis in regulating the binding/release of nickel ions and the formation of the protein complexes. The urease and [NiFe]-hydrogenase maturation pathways cross-talk with each other as UreE receives Ni2+ from hydrogenase maturation factor HypA. Finally, the druggability of the urease maturation pathway is reviewed.


Sign in / Sign up

Export Citation Format

Share Document