Disruption of crosstalk between LX-2 and liver cancer stem-like cells from MHCC97H cells by DFOG via inhibiting FOXM1

Author(s):  
A Chen ◽  
Chang Xu ◽  
Yimin Luo ◽  
Lihua Liu ◽  
Kun Song ◽  
...  

Abstract Hepatic stellate cell (HSC) line LX-2 is activated by liver cancer stem-like cells (LCSLCs) and produces various cytokines that make up most of the hepatocellular carcinoma (HCC) microenvironment. The new genistein derivative, 7-difluoromethoxyl-5,4′-di-n-octylgenistein (DFOG), shows anticancer effects in multiple malignancies by controlling forkhead box M1 (FOXM1). In this study, we aimed to assess whether DFOG disrupts the crosstalk between human HSC LX-2 cells and LCSLCs. Distinct generations of MHCC97H-derived spheres were obtained with the second generation considered as LCSLCs which displayed enhanced self-renewal ability and elevated expression levels of CD133, CD44, and EpCAM proteins, as well as tumorigenicity, as revealed by colony formation assay in vitro and tumorigenicity assay in vivo. LX-2 and MHCC97H cells were co-cultured with/without DFOG (1, 5, and 10 μM, respectively) using the transwell system. FOXM1 overexpression and/or knockdown were employed for mechanistic investigations. Our results suggested that Co-CM promoted LX-2 cell transformation into liver cancer-associated HSCs. Meanwhile, FOXM1 was up-regulated and the level of hepatocyte growth factor (HGF) was increased in LX-2 cells and in the supernatant after Co-CM stimulation. Sphere and colony formation abilities in MHCC97H cells, and protein levels of CD133, CD44, and EpCAM, were also markedly elevated. DFOG dose-dependently inhibited the above effects, similar to FOXM1 knockdown in LX-2 cells. FOXM1 overexpression reversed the inhibitory effects of DFOG or FOXM1 knockdown or both on LX-2 cell activation and LCSLC feature induction in MHCC97H cells by LCSLC/LX-2 co-culture. This study demonstrated that DFOG disrupts the crosstalk between HSCs and LCSLCs to suppress LCSLC features via down-regulating FOXM1 expression and reducing HGF secretion in HSCs.

2001 ◽  
Vol 281 (1) ◽  
pp. G200-G207 ◽  
Author(s):  
C. A. Rivera ◽  
B. U. Bradford ◽  
K. J. Hunt ◽  
Y. Adachi ◽  
L. W. Schrum ◽  
...  

The role of Kupffer cells in CCl4-induced fibrosis was investigated in vivo. Male Wistar rats were treated with phenobarbital and CCl4for 9 wk, and a group of rats were injected with the Kupffer cell toxicant gadolinium chloride (GdCl3) or were fed glycine, which inactivates Kupffer cells. After CCl4alone, the fibrosis score was 3.0 ± 0.1 and collagen protein and mRNA expression were elevated, but GdCl3or glycine blunted these parameters. Glycine did not alter cytochrome P-450 2E1, making it unlikely that glycine affects CCl4metabolism. Treatment with GdCl3or glycine prevented CCl4-induced increases in transforming growth factor (TGF)-β1 protein levels and expression. CCl4treatment increased α-smooth muscle actin staining (score 3.0 ± 0.2), whereas treatment with GdCl3and glycine during CCl4exposure blocked this effect (1.2 ± 0.5); there was no staining with glycine treatment. These results support previous in vitro data and demonstrate that treatment of rats with the selective Kupffer cell toxicant GdCl3prevents stellate cell activation and the development of fibrosis.


2020 ◽  
Vol 52 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Huilin Gong ◽  
Shan Gao ◽  
Chenghuan Yu ◽  
Meihe Li ◽  
Ping Liu ◽  
...  

Abstract Y-box binding protein 1 (YB-1) is manifested as its involvement in cell proliferation and differentiation and malignant cell transformation. Overexpression of YB-1 is associated with glioma progression and patient survival. The aim of this study is to investigate the influence of YB-1 knockdown on glioma cell progression and reveal the mechanisms of YB-1 knockdown on glioma cell growth, migration, and apoptosis. It was found that the knockdown of YB-1 decreased the mRNA and protein levels of YB-1 in U251 glioma cells. The knockdown of YB-1 significantly inhibited cell proliferation, colony formation, and migration in vitro and tumor growth in vivo. Proteome and phosphoproteome data revealed that YB-1 is involved in glioma progression through regulating the expression and phosphorylation of major proteins involved in cell cycle, adhesion, and apoptosis. The main regulated proteins included CCNB1, CCNDBP1, CDK2, CDK3, ADGRG1, CDH-2, MMP14, AIFM1, HO-1, and BAX. Furthermore, it was also found that YB-1 knockdown is associated with the hypo-phosphorylation of ErbB, mTOR, HIF-1, cGMP-PKG, and insulin signaling pathways, and proteoglycans in cancer. Our findings indicated that YB-1 plays a key role in glioma progression in multiple ways, including regulating the expression and phosphorylation of major proteins associated with cell cycle, adhesion, and apoptosis.


2020 ◽  
Vol 318 (2) ◽  
pp. G211-G224
Author(s):  
Denitra A. Breuer ◽  
Maria Cristina Pacheco ◽  
M. Kay Washington ◽  
Stephanie A. Montgomery ◽  
Alyssa H. Hasty ◽  
...  

Nonalcoholic steatohepatitis (NASH) has increased in Western countries due to the prevalence of obesity. Current interests are aimed at identifying the type and function of immune cells that infiltrate the liver and key factors responsible for mediating their recruitment and activation in NASH. We investigated the function and phenotype of CD8+ T cells under obese and nonobese NASH conditions. We found an elevation in CD8 staining in livers from obese human subjects with NASH and cirrhosis that positively correlated with α-smooth muscle actin, a marker of hepatic stellate cell (HSC) activation. CD8+ T cells were elevated 3.5-fold in the livers of obese and hyperlipidemic NASH mice compared with obese hepatic steatosis mice. Isolated hepatic CD8+ T cells from these mice expressed a cytotoxic IL-10-expressing phenotype, and depletion of CD8+ T cells led to significant reductions in hepatic inflammation, HSC activation, and macrophage accumulation. Furthermore, hepatic CD8+ T cells from obese and hyperlipidemic NASH mice activated HSCs in vitro and in vivo. Interestingly, in the lean NASH mouse model, depletion and knockdown of CD8+ T cells did not impact liver inflammation or HSC activation. We demonstrated that under obese/hyperlipidemia conditions, CD8+ T cell are key regulators of the progression of NASH, while under nonobese conditions they play a minimal role in driving the disease. Thus, therapies targeting CD8+ T cells may be a novel approach for treatment of obesity-associated NASH. NEW & NOTEWORTHY Our study demonstrates that CD8+ T cells are the primary hepatic T cell population, are elevated in obese models of NASH, and directly activate hepatic stellate cells. In contrast, we find CD8+ T cells from lean NASH models do not regulate NASH-associated inflammation or stellate cell activation. Thus, for the first time to our knowledge, we demonstrate that hepatic CD8+ T cells are key players in obesity-associated NASH.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xin-Yi Xu ◽  
Yan Du ◽  
Xue Liu ◽  
Yilin Ren ◽  
Yingying Dong ◽  
...  

Abstract Background Hepatic fibrosis is a pathological response of the liver to a variety of chronic stimuli. Hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. Follistatin like 1 (Fstl1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1). However, the precise functions and regulation mechanisms of Fstl1 in liver fibrogenesis remains unclear. Methods Hepatic stellate cell (HSC) line LX-2 stimulated by TGF-β1, primary culture of mouse HSCs and a model of liver fibrosis induced by CCl4 in mice was used to assess the effect of Fstl1 in vitro and in vivo. Results Here, we found that Fstl1 was significantly up regulated in human and mouse fibrotic livers, as well as activated HSCs. Haplodeficiency of Fstl1 or blockage of Fstl1 with a neutralizing antibody 22B6 attenuated CCl4-induced liver fibrosis in vivo. Fstl1 modulates TGF-β1 classic Samd2 and non-classic JNK signaling pathways. Knockdown of Fstl1 in HSCs significantly ameliorated cell activation, cell migration, chemokines C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 8 (CXCL8) secretion and extracellular matrix (ECM) production, and also modulated microRNA-29a (miR29a) expression. Furthermore, we identified that Fstl1 was a target gene of miR29a. And TGF-β1 induction of Fstl1 expression was partially through down regulation of miR29a in HSCs. Conclusions Our data suggests TGF-β1-miR29a-Fstl1 regulatory circuit plays a key role in regulation the HSC activation and ECM production, and targeting Fstl1 may be a strategy for the treatment of liver fibrosis. Graphical abstract


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142355 ◽  
Author(s):  
Ikuo Nakamura ◽  
Kais Zakharia ◽  
Bubu A. Banini ◽  
Dalia S. Mikhail ◽  
Tae Hyo Kim ◽  
...  

2014 ◽  
Vol 126 (11) ◽  
pp. 775-791 ◽  
Author(s):  
Anne-Christine Piguet ◽  
Syamantak Majumder ◽  
Uma Maheshwari ◽  
Reji Manjunathan ◽  
Uttara Saran ◽  
...  

The present study demonstrates the therapeutic potential of everolimus for the treatment of hepatocellular carcinomas in the fibrotic liver by inhibiting hepatic stellate cell activation and angiogenesis.


Author(s):  
Xiaoyan Wu ◽  
Wenhui Dong ◽  
Ming Kong ◽  
Haozhen Ren ◽  
Jinglin Wang ◽  
...  

Liver fibrosis is mediated by myofibroblasts, a specialized cell type involved in wound healing and extracellular matrix production. Hepatic stellate cells (HSC) are the major source of myofibroblasts in the fibrotic livers. In the present study we investigated the involvement of CXXC-type zinc-finger protein 5 (CXXC5) in HSC activation and the underlying mechanism. Down-regulation of CXXC5 was observed in activated HSCs compared to quiescent HSCs both in vivo and in vitro. In accordance, over-expression of CXXC5 suppressed HSC activation. RNA-seq analysis revealed that CXXC5 influenced multiple signaling pathways to regulate HSC activation. The proto-oncogene MYCL1 was identified as a novel target for CXXC5. CXXC5 bound to the proximal MYCL1 promoter to repress MYCL1 transcription in quiescent HSCs. Loss of CXXC5 expression during HSC activation led to the removal of CpG methylation and acquisition of acetylated histone H3K9/H3K27 on the MYCL1 promoter resulting in MYCL1 trans-activation. Finally, MYCL1 knockdown attenuated HSC activation whereas MYCL1 over-expression partially relieved the blockade of HSC activation by CXXC5. In conclusion, our data unveil a novel transcriptional mechanism contributing to HSC activation and liver fibrosis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tho Pham ◽  
Minkyung Bae ◽  
Mi-Bo Kim ◽  
Yoojin Lee ◽  
Siqi Hu ◽  
...  

Abstract Objectives There is limited pharmacological treatment for liver fibrosis, which can result from chronic liver injury. In this study, we investigated the effect of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD) precursor, on the development of liver fibrosis in a diet-induced mouse model of liver fibrosis in vivo and in hepatic stellate cells (HSCs) in vitro. Methods Male C57BL/6 J mice were randomly assigned to three groups: a low-fat control (LF; 6% fat by wt), a high-fat/high-sucrose/high-cholesterol control (HF; 35%/34%/2.0% by wt, n = 13) or a HF diet supplemented with NR at 400 mg/kg/day (HF-NR, n = 14) for 20 weeks. Features of liver fibrosis were assessed by molecular, histological, and biochemical analyses to determine the effect of NR. Metabolic rates, energy expenditure and physical activity were measured using indirect calorimetry. Primary mouse and human HSCs, the primary extracellular matrix-producing cell-type in the liver, were used to determine the anti-fibrogenic effects of NR in vitro. Results HF-NR group had reduced body weight gain, which was attributable to increased energy expenditure. NR supplementation did not affect serum alanine aminotransferase levels and markers of steatosis and inflammation in the liver. However, liver trichrome and picrosirius red staining and total collagen quantification showed significant reductions of collagen by NR. Consistently, hepatic collagen 1a1 mRNA and protein were significantly reduced in the HF-NR group. Liver NAD levels were significantly reduced by HF, but was increased by NR supplementation. RNA-Seq analysis of NAD metabolism genes in quiescent and activated HSCs indicated that NAD levels might be reduced in activated HSCs due to repression of NAD salvage pathway, which regenerates NAD from nicotinamide. Indeed, treatment of primary human and mouse HSCs with NR significantly reduced their activation in vitro. Conclusions NR supplementation prevented the development of liver fibrosis in a diet-induced mouse model of liver fibrosis independent of hepatic steatosis and inflammation. The data suggest that NR may directly reduce HSC activation to exert its anti-fibrotic effect. NR may be developed as a potential preventative for human liver fibrosis. Funding Sources The NIH, USDA Multistate Hatch, and USDA Hatch.


Sign in / Sign up

Export Citation Format

Share Document