scholarly journals Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis

2018 ◽  
Vol 107 (6) ◽  
pp. 965-983 ◽  
Author(s):  
Daniel So ◽  
Kevin Whelan ◽  
Megan Rossi ◽  
Mark Morrison ◽  
Gerald Holtmann ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Boshen Gong ◽  
Chuyuan Wang ◽  
Fanrui Meng ◽  
Haoyu Wang ◽  
Bo Song ◽  
...  

BackgroundAutoimmune thyroid disease (AITD) is characterized by thyroid dysfunction and deficits in the autoimmune system. Growing attention has been paid toward the field of gut microbiota over the last few decades. Several recent studies have found that gut microbiota composition in patients with AITD has altered, but no studies have conducted systematic reviews on the association between gut microbiota and ATID.MethodsWe searched PubMed, Web of Science, Embase, and Cochrane databases without language restrictions and conducted a systematic review and meta-analysis of eight studies, including 196 patients with AITD.ResultsThe meta-analysis showed that the alpha diversity and abundance of certain gut microbiota were changed in patients with AITD compared to the controls. Chao1,the index of the microflora richness, was increased in the Hashimoto’s thyroiditis group compared to controls (SMD, 0.68, 95%CI: 0.16 to 1.20), while it was decreased in the Graves’ disease group (SMD, -0.87, 95%CI: -1.46 to -0.28). In addition, we found that some beneficial bacteria like Bifidobacterium and Lactobacillus were decreased in the AITD group, and harmful microbiota like Bacteroides fragilis was significantly increased compared with the controls. Furthermore, the percentage of relevant abundance of other commensal bacteria such as Bacteroidetes, Bacteroides, and Lachnospiraceae was increased compared with the controls.ConclusionsThis meta-analysis indicates an association between AITD and alteration of microbiota composition at the family, genus, and species levels.Systematic Review RegistrationPROSPERO, identifier CRD42021251557.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Angie Jefferson ◽  
Katie Adolphus

AbstractThe influence on health of the human gut microbiota is increasingly recognised, however wheat fibre, consumed frequently in Western diets has traditionally been considered inert with regard to gut microbiota composition and metabolic activity. We undertook a systematic review (PRISMA methodology) of human intervention studies examining the effects of intact cereal fibres on gut microbiota composition among healthy adults.(1) Studies published in the past 20 years were identified on PubMed and Cochrane electronic databases. Inclusion criteria were: healthy adult participants, at least one intact cereal fibre (or its sub-fraction) and measurement of faecal microbiota related outcomes. Out of forty studies meeting inclusion criteria, seventeen manipulated wheat fibre/bran or its key constituent arabinoxylans (AXOS), and ten used a whole diet approach with predominantly wheat fibre. Results from these twenty seven wheat fibre papers are presented here. Eight studies provided wheat bran/fibre (ranging from 5.7g-21g/day wheat fibre or 13g-28g/day wheat bran). Three reported significant effects on gut microbiota abundance and/or diversity (both at phyla and species level) and one showed no effect. Six reported significant increases in fermentation metabolites and one reported no significant change. Ten studies manipulated whole day fibre intake (predominantly wheat but also permitting some oats, rye and rice). Wholegrain intake ranged from 80g-150 g per day and fibre from 13.7g–40 g per day. Six found significant increases in bacterial diversity and/or abundance and five showed significant increases in fermentation metabolites. Two identified that response to high fibre intervention is dependent on baseline gut microbiota richness - those with limited richness exhibiting greater microbiota change over time in response to fibre increase. Two reported no significant effects. Nine studies utilised manipulation of AXOS (2.2g–18.8 g per day) with five demonstrating significant increases in target bacterial species and six significant increases in fermentation metabolites. One reported no significant effect to faecal metabolites. This review supports a role for the wheat fibre found in everyday foods (such as bran breakfast cereal of high fibre breads) promoting both microbiota diversity and abundance. While the healthy microbiome is yet to be defined, consumption of a single daily serving of wheat bran fibre appears sufficient to effect gut microbiota fermentation (with demonstrable effects arising from as low as 6g/day), and promote species diversity, with potential benefit to health.However exploration of stability over longer time frames (> 12 weeks) is now required.


2018 ◽  
Vol 120 (9) ◽  
pp. 1014-1022 ◽  
Author(s):  
Daniel Lin ◽  
Brandilyn A. Peters ◽  
Charles Friedlander ◽  
Hal J. Freiman ◽  
James J. Goedert ◽  
...  

AbstractIncreasing evidence indicates that gut microbiota may influence colorectal cancer risk. Diet, particularly fibre intake, may modify gut microbiota composition, which may affect cancer risk. We investigated the relationship between dietary fibre intake and gut microbiota in adults. Using 16S rRNA gene sequencing, we assessed gut microbiota in faecal samples from 151 adults in two independent study populations: National Cancer Institute (NCI), n 75, and New York University (NYU), n 76. We calculated energy-adjusted fibre intake based on FFQ. For each study population with adjustment for age, sex, race, BMI and smoking, we evaluated the relationship between fibre intake and gut microbiota community composition and taxon abundance. Total fibre intake was significantly associated with overall microbial community composition in NYU (P=0·008) but not in NCI (P=0·81). In a meta-analysis of both study populations, higher fibre intake tended to be associated with genera of class Clostridia, including higher abundance of SMB53 (fold change (FC)=1·04, P=0·04), Lachnospira (FC=1·03, P=0·05) and Faecalibacterium (FC=1·03, P=0·06), and lower abundance of Actinomyces (FC=0·95, P=0·002), Odoribacter (FC=0·95, P=0·03) and Oscillospira (FC=0·96, P=0·06). A species-level meta-analysis showed that higher fibre intake was marginally associated with greater abundance of Faecalibacterium prausnitzii (FC=1·03, P=0·07) and lower abundance of Eubacterium dolichum (FC=0·96, P=0·04) and Bacteroides uniformis (FC=0·97, P=0·05). Thus, dietary fibre intake may impact gut microbiota composition, particularly class Clostridia, and may favour putatively beneficial bacteria such as F. prausnitzii. These findings warrant further understanding of diet–microbiota relationships for future development of colorectal cancer prevention strategies.


2019 ◽  
Author(s):  
Jordan Stanford ◽  
Karen Charlton ◽  
Anita Stefoska-Needham ◽  
Rukayat Ibrahim ◽  
Kelly Lambert

Abstract Background There is mounting evidence that individuals with kidney disease have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of individuals with kidney disease may differ from healthy controls. Synthesis of this evidence is important to inform future clinical trials. This systematic review aims to characterise differences of the gut microbiota composition in adults with kidney disease, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with any type of kidney disease and compared this to the profile of healthy controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science, Cochrane Library) as well as selected grey literature sources were searched up until August 2018. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Sixteen articles, reporting 15 studies met the eligibility criteria and included a total of 540 adults with kidney disease and 1117 healthy controls. Compared to healthy controls, individuals with kidney disease had increased abundances of Enterobacteriaceae, and decreased abundances of Coprococcus and Prevotella. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Altered microbial functions in adults with kidney disease were reported, particularly in the context of metabolic pathways relating to urea and uremic toxin generation. Only three of the 16 articles accounted for diet, and of these studies only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease differs from healthy controls. Future study designs should include adequate reporting of important confounders such as dietary intakes to assist with interpretation of findings.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3862
Author(s):  
Kate I. Tomsett ◽  
Helen L. Barrett ◽  
Evelyn E. Dekker ◽  
Leonie K. Callaway ◽  
David H. McIntyre ◽  
...  

Pregnancy alters the inflammatory state, metabolic hormones, and gut microbiota composition. It is unclear if the lower abundance of dietary fiber-fermenting, short-chain fatty acid-producing bacteria observed in hypertension also occurs in hypertensive disorders of pregnancy (HDP). This study investigated the relationship between dietary fiber intake and the gut microbiota profile at 28 weeks gestation in women who developed HDP in late pregnancy (n = 22) or remained normotensive (n = 152) from the Study of PRobiotics IN Gestational diabetes (SPRING). Dietary fiber intake was classified as above or below the median of 18.2 g/day. Gut microbiota composition was examined using 16S rRNA gene amplicon sequencing. The gut permeability marker zonulin was measured in a subset of 46 samples. In women with future HPD, higher dietary fiber intake was specifically associated with increased abundance of Veillonella, lower abundance of Adlercreutzia, Anaerotruncus and Uncl. Mogibacteriaceae and higher zonulin levels than normotensive women. Fiber intake and zonulin levels were negatively correlated in women with normotensive pregnancies but not in pregnancies with future HDP. In women with normotensive pregnancies, dietary fiber intake may improve gut barrier function. In contrast, in women who develop HDP, gut wall barrier function is impaired and not related to dietary fiber intake.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tzu-Wen Cross ◽  
Evan Hutchison ◽  
Jacob Coulthurst ◽  
Federico Rey

Abstract Objectives Dietary fiber consumption improves cardiometabolic health, partly by enhancing microbial diversity and increasing production of butyrate in the distal gut. However, it is unclear whether the benefits associated with different types of fiber vary based on the gut microbiota composition. We surveyed nine different human gut microbial communities by characterizing them in germ-free mice and selected two communities based on their butyrate-producing capacity (“B”) and diversity (“D”) (i.e., high- vs. low-BD communities). Our objective was to assess the role of high- vs. low-BD communities on the metabolic effects elicited by the consumption of various dietary fibers. Methods We formulated seven diets with different sources of dietary fiber (10% wt/wt): i) resistant starch type 2 (RS2); ii) RS4; iii) inulin; iv) short-chain fructooligosaccharides (scFOS); v) pectin, vi) assorted fiber (a combination of the 5 fermentable fibers), and vii) cellulose (a non-fermentable control). Germ-free C57BL/6 male mice were colonized with either the high- or low-BD communities and fed the assorted fiber diet for 2 weeks to reach stability of microbial engraftment. Mice were then switched to one of the 7 diets for 4 weeks (n = 7–10/group; 117 mice total). We quantified cecal level of short-chain fatty acids and assessed the gut microbiota composition using 16S rRNA gene-based sequencing. Results Mice colonized with the high-BD community have lower body weight and fat mass compared to the low-BD community when fermentable-fiber sources RS2, inulin, or assorted fiber were present in the diet. Body weight did not differ between the two communities when mice were fed RS4, scFOS, pectin, or cellulose diets. Lower body weight and fat mass were associated with greater cecal butyrate concentrations and microbial diversity. Conclusions The efficacy of dietary fiber interventions on metabolic health varies based on the gut microbiota composition. Overall, our results suggest that dietary fiber supplementations need to be matched with the metabolic potential of the gut microbiome. Funding Sources Fondation Leducq, USDA, and NIH.


Sign in / Sign up

Export Citation Format

Share Document