UBE3C promotes proliferation and inhibits apoptosis by activating the β-catenin signaling via degradation of AXIN1 in gastric cancer

2020 ◽  
Author(s):  
Yu Zhang ◽  
Jiapeng Xu ◽  
Hongbing Fu ◽  
Ziran Wei ◽  
Dejun Yang ◽  
...  

Abstract Gastric cancer (GC) remains one of the most frequent cancers worldwide. Previous studies have shown that E3 ubiquitin ligase E3C (UBE3C) promotes the progression of multiple types of cancer. However, little is known about the expression and molecular mechanism of UBE3C in GC. In this study, UBE3C is upregulated in clinical GC samples and RNA-seq data from The Cancer Genome Atlas, and the UBE3C upregulation is correlated with poor clinical outcomes in patients with GC. In vitro, knockdown of UBE3C suppresses proliferation and enhances apoptosis in GC cells by inhibiting β-catenin signaling pathway. In contrast, in vitro overexpression of UBE3C promotes GC cell proliferation and inhibits apoptosis through the upregulation of β-catenin signaling by promoting ubiquitination of AXIN1. In vivo, knockdown of UBE3C inhibits tumor growth in a nude mouse model. Concurrently, the UBE3C knockdown resulted in an increase of AXIN1 and a reduction of β-catenin in the nucleus and cytoplasm in the xenograft tumor tissues. Our results demonstrate that UBE3C promotes GC progression through activating the β-catenin signaling via degradation of AXIN1. Our data suggest that UBE3C exerts oncogenic effects in GC and thus provides a promising prognostic biomarker and a potential therapeutic target for GC therapy.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Oncogene ◽  
2021 ◽  
Author(s):  
Yong Wu ◽  
Qinhao Guo ◽  
Xingzhu Ju ◽  
Zhixiang Hu ◽  
Lingfang Xia ◽  
...  

AbstractNumerous studies suggest an important role for copy number alterations (CNAs) in cancer progression. However, CNAs of long intergenic noncoding RNAs (lincRNAs) in ovarian cancer (OC) and their potential functions have not been fully investigated. Here, based on analysis of The Cancer Genome Atlas (TCGA) database, we identified in this study an oncogenic lincRNA termed LINC00662 that exhibited a significant correlation between its CNA and its increased expression. LINC00662 overexpression is highly associated with malignant features in OC patients and is a prognostic indicator. LINC00662 significantly promotes OC cell proliferation and metastasis in vitro and in vivo. Mechanistically, LINC00662 is stabilized by heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1). Moreover, LINC00662 exerts oncogenic effects by interacting with glucose-regulated protein 78 (GRP78) and preventing its ubiquitination in OC cells, leading to activation of the oncogenic p38 MAPK signaling pathway. Taken together, our results define an oncogenic role for LINC00662 in OC progression mediated via GRP78/p38 signaling, with potential implications regarding therapeutic targets for OC.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


2017 ◽  
Vol 43 (3) ◽  
pp. 1090-1099 ◽  
Author(s):  
Zhonghua Jiang ◽  
Tingting Yu ◽  
Zhining Fan ◽  
Hongmei Yang ◽  
Xin Lin

Background/Aims: Krüppel-like factor (KLF) 7 protein is a member of the KLF transcription factor family, which plays important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation and metabolism. However, the role of KLF7 in gastric cancer (GC) is unknown. The aim of this study is to explore the role of KLF7 in GC and its correlation with clinicopathological characteristics and prognosis of GC patients. Methods: We first systematically evaluated dysregulation of the KLF family in The Cancer Genome Atlas (TCGA) GC database. Then, 252 patients who underwent surgery for GC were enrolled to validate the results from the TCGA. Functional studies were also used to explore the role of KLF7 in GC. Results: In the TCGA database, we found that KLF7 was an independent predictor for survival by both univariate and multivariate analysis (P<0.05). In a validation cohort, KLF7 expression was significantly increased in GC tissues compared with adjacent normal controls (P=0.013). High KLF7 expression correlated with inferior prognostic factors, such as T stage (P=0.022), N stage (P =0.005) and lymphovascular invasion (P=0.009). Furthermore, we observed a strong negative correlation between KLF7 expression and 5-year overall survival and disease-free survival in GC patients (P<0.05). Moreover, our in vitro studies showed a notable decrease in migration in KLF7 knockdown cells. Conclusion: KLF7 has an important role in GC progression, as it inhibits GC cell migration and may serve as a prognostic marker.


2020 ◽  
Vol 34 ◽  
pp. 205873842095459
Author(s):  
Jijun Wang ◽  
Fan Wu ◽  
Yaoyao Li ◽  
Lei Pang ◽  
Xiaohong Wang ◽  
...  

Introduction: This work was to explore the connection of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and microRNA-4319 (miR-4319), and to investigate the associated underlying mechanisms in gastric cancer (GC) progression. Methods: Quantitative real-time PCR was performed to measure KCNQ1OT1, miR-4319 and DNA-damage regulated autophagy modulator 2 (DRAM2) expression levels in GC cells. Moreover, expression level of KCNQ1OT1 and DRAM2 in GC tissues was analyzed at ENCORI website ( http://starbase.sysu.edu.cn/index.php ). Cell proliferation, colony formation assay and flow cytometry assays were performed to analyze effects of KCNQ1OT1, miR-4319 and DRAM2 on cell growth and death. Dual-luciferase activity reporter assay and RNA immunoprecipitation assay was conducted to verify the interactions of KCNQ1OT1 or DRAM2 and miR-4319. Results and Conclusion: We found KCNQ1OT1 level was increased in tumor tissues and cells. Force the expression of KCNQ1OT1 promotes, while knockdown KCNQ1OT1 inhibits GC cell growth. Further studies indicated miR-4319 functioned as a bridge between KCNQ1OT1 and DRAM2. Finally, we showed KCNQ1OT1/miR-4319/DRAM2 axis regulates GC cell growth in vitro and in vivo. lncRNA KCNQ1OT1 promotes GC progression by sponging miR-4319 to upregulate DRAM2, indicating KCNQ1OT1 might be a promising target for GC treatment.


2020 ◽  
Vol 16 (25) ◽  
pp. 1921-1930
Author(s):  
Zhou Xu ◽  
Lin Zhuang ◽  
Xiaoyin Wang ◽  
Qianrong Li ◽  
Yan Sang ◽  
...  

Aim: To explore FBXW7 protein-coding transcript isoform (α, β and γ) expression, their functions and prognostic value in ovarian serous cystadenocarcinoma (OSC). Materials & methods: FBXW7 transcript data were collected from The Cancer Genome Atlas and the Genotype-Tissue Expression project. IOSE, A2780 and SKOV3 cells were used for in vitro and in vivo studies. Results: FBXW7α and FBXW7γ are dominant protein-coding transcripts that were downregulated in OSC. FBXW7γ overexpression reduced the protein expression of c-Myc, Notch1 and Yap1 and suppressed OSC cell growth in vitro and in vivo. FBXW7γ expression was an independent indicator of longer disease-specific survival (HR: 0.588; 95% CI: 0.449–0.770) and progression-free survival (HR: 0.708; 95% CI: 0.562–0.892). Conclusion: FBXW7γ is a tumor-suppressive and might be the only prognosis-related FBXW7 transcript in OSC.


Author(s):  
Xin Chen ◽  
Zhenyao Chen ◽  
Hao Wu ◽  
Xianghua Liu ◽  
Fengqi Nie ◽  
...  

Background: Gastrointestinal Cancer (GICs) is the most common group of malignancies, and many of its types are the leading causes of cancer related death worldwide. Pseudogenes have been revealed to have critical regulatory roles in human cancers. The objective of this study is to comprehensive characterize the pseudogenes expression profiling and identify key pseudogenes in the development of gastric cancer (GC).Methods: The pseudogenes expression profiling was analyzed in six types of GICs cancer from The Cancer Genome Atlas RNA-seq data to identify GICs cancer related pseudogenes. Meanwhile, the genomic characterization including somatic alterations of pseudogenes was analyzed. Then, CCK8 and colony formation assays were performed to evaluate the biological function of RP11-3543B.1 and miR-145 in gastric cancer cells. The mechanisms of pseudogene RP11-3543B.1 in GC cells were explored via using bioinformatics analysis, next generation sequencing and lucifarese reporter assay.Results: We identified a great number of pseudogenes with significantly altered expression in GICs, and some of these pseudogenes expressed differently among the six cancer types. The amplification or deletion in the pseudogenes-containing loci involved in the alterations of pseudogenes expression in GICs. Among these altered pseudogenes, RP11-3543B.1 is significantly upregulated in gastric cancer. Down-regulation of RP11-3543B.1 expression impaired GC cells proliferation both in vitro and in vivo. RP11-3543B.1 exerts oncogene function via targeting miR-145-5p to regulate MAPK4 expression in gastric cancer cells.Conclusion: Our study reveals the potential of pseudogenes expression as a new paradigm for investigating GI cancer tumorigenesis and discovering prognostic biomarkers for patients.


2020 ◽  
Author(s):  
Gang Zhao ◽  
Jun Jia ◽  
Lansheng Wang ◽  
Yongkang Zhang ◽  
Han Yang ◽  
...  

Abstract Background:Postoperative recurrence is the main reason of poor clinical consequences in glioma patients, so preventing recurrence of tumors is crucial in management of gliomas. Methods:In this study, the expression of matrix metalloproteinases (MMPs)in tissues from normal were detected by using RNA-seq analysis.Glioma cases from the public databases (The Cancer Genome Atlas (TCGA), The Chinese Glioma Genome Atlas(CGGA), Betastasis) were included in this study.The hydrogelcontains minocycline (Mino) and vorinostat (Vor)(G/Mino + Vor) was formed under 365 nm when photoinitiator was added in. High Performance Liquid Chromatography (HPLC) assay was used to assessed the release of drugs in G/Mino + Vor hydrogel. MTT assay was used to explore the biosecurity of GelMA. Immunohistochemistry assay, ELISA assay, Tunel assay were used to demonstrate the antitumor effect of G/Mino + Vor hydrogel.Results:We developed G/Mino + Vor hydrogel successfully. Thenthe experiment in vitro and in vivo confirmed MMPs-responsive delivery of minocycline and vorinostat in hydrogel and the anti-glioma effect on incomplete tumor operation model, which indicated that G/Mino + Vor hydrogel effectively inhibited the recurrence of glioma after surgery.Conclusions: In summary, G/Mino + Vor hydrogel could continuous release minocycline and vorinostat in surgical cavity for inhibiting local recurrence of glioma after operation.


FEBS Open Bio ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 455-467 ◽  
Author(s):  
Daichi Sadato ◽  
Mina Ogawa ◽  
Chizuko Hirama ◽  
Tsunekazu Hishima ◽  
Shin‐Ichiro Horiguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document