scholarly journals Inhibition of Antimicrobial Resistant Salmonella Heidelberg by a Synbiotic Combination of Prebiotics and Probiotics in an in Vitro Model (P20-011-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Ahmed Gomaa ◽  
Martha Verghese ◽  
Josh Herring

Abstract Objectives The aim of this study was to compare effects of different probiotic strains with and without prebiotics on lowering Salmonella heidelberg CFU in vitro. Methods The different inhibition levels of three strains of probiotics, Bifidobacterium lactis (Danisco Bl-04), Lactobacillus rhamnosus (Danisco Lr-32™) and Lactobacillus acidophilus (Danisco La-14®) on S. heidelberg were assessed and compared in presence and absence of 2.5% prebiotic cocktail of mannose (Acros Organics), xylose (Fisher Scientific), and inulin (MP Biomedicals) using Mueller-Hinton agar wells diffusion (factorial experiment). Recommendations for growth of selected microorganisms such as temperature and oxygen conditions were taken into consideration. All the analysis was conducted in triplicates. Results The results showed that three probiotics strains were able to significantly (P < 0.05) inhibit growth of S. heidelberg with and without prebiotics. Moreover, results showed that zones of inhibition were significantly (P = 0.03) greater with addition of prebiotics regardless of probiotic strains used. Conclusions According to the Centers for Disease Control (CDC), salmonella causes about 1.2 million illnesses, 23,000 hospitalizations, and 450 deaths in US every year. S. heidelberg is a multidrug-resistant strain that has been associated with high risk of hospitalizations. Probiotics produce organic acids that lower pH of intestines thus inhibiting pathogenic microorganisms. Probiotics may be utilized in livestock feed to reduce the chance of any contamination before the materials undergo processing, thereby developing sustainable food products that are safe from farm to fork. Funding Sources USDA-NIFA. Supporting Tables, Images and/or Graphs

2014 ◽  
Vol 910 ◽  
pp. 137-140
Author(s):  
Chao Hui Xue ◽  
Lan Wei Zhang ◽  
Hong Bo Li ◽  
Shu Mei Wang

Three Lactobacillus strains were screened on the basis of probiotic characteristics (i.e., resistance to low pH and bile salts, adhesion to the human gastrointestinal tract, inhibition of pathogenic strains). They further exhibited producing antimicrobial activities of non-acid molecule (s). In addition, antibacterial peptides were isolated and purified from the cell-free culture supernatants of these three probiotic strains. Based on TricineSDSPAGE, the antimicrobial peptide was approximately 10 kDa in size. After analyzing the sequence of the 16SrDNA regions of these three strains, they were identified asLactobacillus crispatus Lactobacillus rhamnosus and Lactobacillus rhamnosua GG.Using an in vitro system simulating gastric transit, our findings indicated that the three probiotic strains had the ability to tolerate gastroenteric environment and the adhesive capacity to HT-29 cells. It was demonstrated that the probiotic strains inhibited subsequent adhesion of E. coli to the HT-29 cell. Among the selected strains,L. rhamnosusF1333 showed a high probiotic potential and could be used in health-promoting food products.


2019 ◽  
Author(s):  
Jacek Piatek ◽  
Henning Sommermeyer ◽  
Arleta Ciechelska-Rybarczyk ◽  
Malgorzata Bernatek

AbstractSupplementation with probiotics is considered as alternative treatment or adjuvant therapy for a number of bacterial infections for which the use of antibiotics is either not recommended or emerging antibiotic resistance is a major concern. Inhibition of the growth of pathogenic bacteria has been related to a number of different activities of probiotic bacteria or yeasts, some of which are very specific for particular strains of probiotics. As the different inhibition activities might act additively or even synergistically, probiotic multistrain products are discussed as potentially being more effective in pathogen inhibition than products containing one or a small number of probiotic strains. The present study investigated the in vitro inhibition of Escherichia (E.) coli, Shigella spp., Salmonella (S.) typhimurium and Clostridum (Cl.) difficile, all being human pathogens of significant worldwide healthcare concerns. The probiotic containing the yeast Sacharomyces (S.) boulardii inhibited all four pathogens. Similar inhibitions were observed with a bacterial probiotic containing three different strains (Pen, E/N and Oxy) of Lactobacillus (Lc.) rhamnosus. Compared to the inhibition found for these probiotics, the inhibitory effects of a complex multistrain synbiotic, containing nine different probiotic strains (6 Lactobacilli and 3 Bifidobacteria) and the prebiotic fructooligosaccharide (FOS), were significantly stronger. The stronger inhibition by the complex multistrain synbiotic was observed for all four tested pathogens. Our findings support a hypothesis that complex synbiotic products containing a larger number of different strains combined with a prebiotic component might be more attractive candidates for further clinical characterization than simpler probiotics containing one or only few probiotic strains.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Marianne Stage ◽  
Anita Wichmann ◽  
Mette Jørgensen ◽  
Natalia Ivonne Vera-Jimenéz ◽  
Malue Wielje ◽  
...  

ABSTRACT Lactobacillus rhamnosus GG is one of the most widely marketed and studied probiotic strains. In L. rhamnosus GG, the spaCBA-srtC1 gene cluster encodes pili, which are important for some of the probiotic properties of the strain. A previous study showed that the DNA sequence of the spaCBA-srtC1 gene cluster was not present in some L. rhamnosus GG variants isolated from liquid dairy products. To examine the stability of the L. rhamnosus GG genome in an industrial production process, we sequenced the genome of samples of L. rhamnosus GG (DSM 33156) collected at specific steps of the industrial production process, including the culture collection stock, intermediate fermentations, and final freeze-dried products. We found that the L. rhamnosus GG genome sequence was unchanged throughout the production process. Consequently, the spaCBA-srtC1 gene locus was intact and fully conserved in all 31 samples examined. In addition, different production batches of L. rhamnosus GG exhibited consistent phenotypes, including the presence of pili in final freeze-dried products, and consistent characteristics in in vitro assays of probiotic properties. Our data show that L. rhamnosus GG is highly stable in this industrial production process. IMPORTANCE Lactobacillus rhamnosus GG is one of the best-studied probiotic strains. One of the well-characterized features of the strain is the pili encoded by the spaCBA-srtC1 gene cluster. These pili are involved in persistence in the gastrointestinal tract and are important for the probiotic properties of L. rhamnosus GG. Previous studies demonstrated that the L. rhamnosus GG genome can be unstable under certain conditions and can lose the spaCBA-srtC1 gene cluster. Since in vitro studies have shown that the loss of the spaCBA-srtC1 gene cluster decreases certain L. rhamnosus GG probiotic properties, we assessed both the genomic stability and phenotypic properties of L. rhamnosus GG throughout an industrial production process. We found that neither genomic nor phenotypic changes occurred in the samples. Therefore, we demonstrate that L. rhamnosus GG retains the spaCBA-srtC1 cluster and exhibits excellent genomic and phenotypic stability in the specific industrial process examined here.


2019 ◽  
Vol 20 (19) ◽  
pp. 4707 ◽  
Author(s):  
Alan Vega-Bautista ◽  
Mireya de la Garza ◽  
Julio César Carrero ◽  
Rafael Campos-Rodríguez ◽  
Marycarmen Godínez-Victoria ◽  
...  

Lactoferrin (Lf) is an iron-binding milk glycoprotein that promotes the growth of selected probiotic strains. The effect of Lf on the growth and diversification of intestinal microbiota may have an impact on several issues, including (i) strengthening the permeability of the epithelial cell monolayer, (ii) favoring the microbial antagonism that discourages the colonization and proliferation of enteric pathogens, (iii) enhancing the growth and maturation of cell-monolayer components and gut nerve fibers, and (iv) providing signals to balance the anti- and pro-inflammatory responses resulting in gut homeostasis. Given the beneficial role of probiotics, this contribution aims to review the current properties of bovine and human Lf and their derivatives in in vitro probiotic growth and Lf interplay with microbiota described in the piglet model. By using Lf as a component in pharmacological products, we may enable novel strategies that promote probiotic growth while conferring antimicrobial activity against multidrug-resistant microorganisms that cause life-threatening diseases, especially in neonates.


2013 ◽  
Vol 109 (S2) ◽  
pp. S51-S62 ◽  
Author(s):  
Sergio Muñoz-Quezada ◽  
Empar Chenoll ◽  
José María Vieites ◽  
Salvador Genovés ◽  
José Maldonado ◽  
...  

The aim of the present study was to isolate, identify and characterise novel strains of lactic acid bacteria and bifidobacteria with probiotic properties from the faeces of exclusively breast-fed infants. Of the 4680 isolated colonies, 758 exhibited resistance to low pH and tolerance to high concentrations of bile salts; of these, only forty-two exhibited a strong ability to adhere to enterocytesin vitro.The identities of the isolates were confirmed by 16S ribosomal RNA (rRNA) sequencing, which permitted the grouping of the forty-two bacteria into three different strains that showed more than 99 % sequence identity withLactobacillus paracasei,Lactobacillus rhamnosusandBifidobacterium breve, respectively. The strain identification was confirmed by sequencing the 16S–23S rRNA intergenic spacer regions. Strains were assayed for enzymatic activity and carbohydrate utilisation, and they were deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institute Pasteur and namedL. paracaseiCNCM I-4034,B. breveCNCM I-4035 andL. rhamnosusCNCM I-4036. The strains were susceptible to antibiotics and did not produce undesirable metabolites, and their safety was assessed by acute ingestion in immunocompetent and immunosuppressed BALB/c mouse models. The three novel strains inhibitedin vitrothe meningitis aetiological agentListeria monocytogenesand human rotavirus infections.B. breveCNCM I-4035 led to a higher IgA concentration in faeces and plasma of mice. Overall, these results suggest thatL. paracaseiCNCM I-4034,B. breveCNCM I-4035 andL. rhamnosusCNCM I-4036 should be considered as probiotic strains, and their human health benefits should be further evaluated.


2001 ◽  
Vol 8 (2) ◽  
pp. 293-296 ◽  
Author(s):  
M. Juntunen ◽  
P. V. Kirjavainen ◽  
A. C. Ouwehand ◽  
S. J. Salminen ◽  
E. Isolauri

ABSTRACT The concentration of fecal mucin and the adhesion of specific probiotics and their combinations in the intestinal mucus of infants during and after rotavirus diarrhea and in healthy children were determined. Mucus was prepared from fecal samples from 20 infants during and after rotavirus diarrhea and from 10 healthy age-matched children. Mucin concentration was determined, and the adhesion of five probiotics—Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Lactobacillus paracasei F19,Lactobacillus acidophilus LA5, and Bifidobacterium lactis Bb12—and their combinations was tested in vitro. The mean concentrations of fecal mucin during and after rotavirus diarrhea, 15.2 and 14.1 mg/g, were comparable to that in healthy children, 14.9 mg/g. The adherence of probiotics ranged from 1 to 34% in healthy subjects as indicated for the following strains: L. rhamnosus GG, 34%; B. lactis Bb12, 31%; L. acidophilus LA5, 4%; L. paracasei F19, 3%; and L. caseiShirota, 1% (P = 0.0001). The distinctive pattern of probiotic adherence was not influenced by rotavirus diarrhea. The adhesion of Bb12 in the presence of GG increased from 31 to 39% in healthy infants (P = 0.018) and in episodes of diarrhea increased from 26 to 44% (P = 0.001). Rotavirus diarrhea does not decrease the production of fecal mucin or with respect to the adhesion of probiotic bacteria tested in vitro. Combination of specific probiotic strains may enhance adherence in a synergistic manner. Optimal clinical application of these interactions may offer novel therapeutic guidelines for the treatment and prevention of gastrointestinal infections.


2002 ◽  
Vol 46 (4) ◽  
pp. 971-976 ◽  
Author(s):  
Joan C. Fung-Tomc ◽  
Junius Clark ◽  
Beatrice Minassian ◽  
Michael Pucci ◽  
Yuan-Hwang Tsai ◽  
...  

ABSTRACT The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) with decreased susceptibility to vancomycin has intensified the search for alternative therapies for the treatment of infections caused by this organism. One approach has been to identify a β-lactam with improved affinity for PBP 2a, the target enzyme responsible for methicillin resistance in staphylococci. BMS-247243 is such a candidate, with MICs that inhibit 90% of isolates tested (MIC90s) of 4, 2, and 8 μg/ml for methicillin-resistant strains of S. aureus, S. epidermidis, and S. haemolyticus, respectively, as determined on plates with Mueller-Hinton agar and 2% NaCl. The BMS-247243 MICs for MRSA were minimally affected by the susceptibility testing conditions (inoculum size, prolonged incubation, addition of salt to the test medium) or by staphylococcal β-lactamases. BMS-247243 MIC90s for methicillin-susceptible staphylococcal species ranged from ≤0.25 to 1 μg/ml. The BMS-247243 MIC90 for β-lactamase-producing S. aureus strains was fourfold higher than that for β-lactamase-nonproducing strains. BMS-247243 is hydrolyzed by staphylococccal β-lactamases at 4.5 to 26.2% of the rates measured for cephaloridine. The affinity of BMS-247243 for PBP 2a was >100-fold better than that of methicillin or cefotaxime. BMS-247243 is bactericidal for MRSA, killing the bacteria twice as fast as vancomycin. These in vitro activities of BMS-247243 correlated with its in vivo efficacy against infections in animals, including the neutropenic murine thigh and rabbit endocarditis models involving MRSA strains. In conclusion, BMS-247243 has in vitro and in vivo activities against methicillin-resistant staphylococci and thus may prove to be useful in the treatment of infections caused by these multidrug-resistant organisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Faizan Abul Qais ◽  
Anam Shafiq ◽  
Haris M. Khan ◽  
Fohad M. Husain ◽  
Rais A. Khan ◽  
...  

Development of multidrug resistance among pathogens has become a global problem for chemotherapy of bacterial infections. Extended-spectrum β-lactamase- (ESβL-) producing enteric bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are the two major groups of problematic MDR bacteria that have evolved rapidly in the recent past. In this study, the aqueous extract of Murraya koenigii leaves was used for synthesis of silver nanoparticles. The synthesized MK-AgNPs were characterized using UV-vis spectroscopy, FTIR, XRD, SEM, and TEM, and their antibacterial potential was evaluated on multiple ESβL-producing enteric bacteria and MRSA. The nanoparticles were predominantly found to be spheroidal with particle size distribution in the range of 5–20 nm. There was 60.86% silver content in MK-AgNPs. Evaluation of antibacterial activity by the disc-diffusion assay revealed that MK-AgNPs effectively inhibited the growth of test pathogens with varying sized zones of inhibition. The MICs of MK-AgNPs against both MRSA and methicillin-sensitive S. aureus (MSSA) strains were 32 μg/ml, while for ESβL-producing E. coli, it ranged from 32 to 64 μg/ml. The control strain of E. coli (ECS) was relatively more sensitive with an MIC of 16 μg/ml. The MBCs were in accordance with the respective MICs. Analysis of growth kinetics revealed that the growth of all tested S. aureus strains was inhibited (∼90%) in presence of 32 μg/ml of MK-AgNPs. The sensitive strain of E. coli (ECS) showed least resistance to MK-AgNPs with >81% inhibition at 16 μg/ml. The present investigation revealed an encouraging result on in vitro efficacy of green synthesized MK-AgNPs and needed further in vivo assessment for its therapeutic efficacy against MDR bacteria.


2012 ◽  
Vol 64 (4) ◽  
pp. 1473-1480 ◽  
Author(s):  
Tanja Petrovic ◽  
Suzana Dimitrijevic ◽  
Zorica Radulovic ◽  
N. Mirkovic ◽  
Jasmina Rajic ◽  
...  

In this study, twelve strains of Lactobacillus plantarum derived from spontaneously fermented vegetables (carrots and beetroot) and traditionally prepared sauerkraut were compared for their potential probiotic abilities with seven Lactobacillus rhamnosus strains of human origin. The tested strains were investigated for some technological properties and in vitro functional characteristics for potential probiotic strains. Selection probiotic criteria included the ability of the strains to withstand conditions similar to the digestive tract, antimicrobial activity against a wide range of intestinal pathogens and sensitivity to antibiotics. The total acidity in milk was generally higher in intestinal strains in relation to plant strains. The ability of the tested strains to survive simulated gastric conditions showed a greater resistance of the human strains at a low pH 2.5 and the presence of pepsin, while in the presence of bile salts and pancreatin, some intestinal strains were more sensitive compared to plant strains. A wide spectrum of antimicrobial activities was observed in all tested strains. Most of the plant strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin and penicillin, while only some intestinal strains were resistant to these drugs.


Sign in / Sign up

Export Citation Format

Share Document