scholarly journals Plasma Linoleic Acid Is Associated with Less Adiposity and Lower Risk of Metabolic Syndrome: An NHANES Analysis (P08-121-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Kristina Petersen ◽  
Valerie Sullivan ◽  
Victor Fulgoni ◽  
Fulya Eren ◽  
Martha Cassens ◽  
...  

Abstract Objectives To examine relationships between plasma fatty acids, dietary intake of fatty acids, adiposity and risk of metabolic syndrome (MetSyn) in the National Health and Nutrition Examination Survey (NHANES) dataset. Methods Plasma fatty acids levels (n = 24) measured in NHANES 2001–2003 (n = 1674) and dietary intake of fatty acids (n = 19) from NHANES 2001–2014 (n = 9108) were used for these analyses. The association between plasma fatty acid levels, intake of fatty acids and body weight, BMI, waist circumference, and number of criteria for MetSyn was assessed. Backwards stepwise multiple regression analyses adjusted for age, sex, ethnicity, prescription of anti-hypertensive, lipid-lowering of anti-diabetic medication, modified Health Eating Index-2015 score, physical activity, poverty to income ratio, smoking, and calorie intake were conducted to identify fatty acids that were predictive of the outcomes of interest. Logistic regression analysis, adjusted for the aforementioned covariates, was used to assess the odds of MetSyn, and overweight/obesity associated with each fatty acid. Results Higher levels of the plasma saturated fatty acids myristic acid (14:0), stearic acid (18:0), and docosanoic acid (22:0) were associated with greater BMI, waist circumference, and number of MetSyn criteria (P < 0.01). Arachidic acid (20:0) and lignoceric acid (24:0) were inversely associated with BMI, waist circumference, and number of MetSyn criteria. Plasma linoleic acid (18:2) was the only PUFA inversely associated with BMI (β = −0.002), waist circumference (β = −0.005), and number of MetSyn criteria (β −0.0003) (all P < 0.01). Plasma linoleic acid was also correlated with lower risk of being overweight or obese (odds ratio (OR) 0.9995; P < 0.03) and having an elevated waist circumference (OR 0.9992; P < 0.01). These results were not supported by the dietary fatty acid intake data. Conclusions These data from a representative U.S. cohort indicate that plasma medium and longer chain saturated fats were generally associated with greater adiposity and more criteria for MetSyn, whereas these relationships were not detected for MUFA. Linoleic acid was the only PUFA associated with less adiposity and lower risk of MetSyn and, thus also lower risk of cardiometabolic disease. Funding Sources ACH Food Companies, Inc.

2008 ◽  
Vol 54 (1) ◽  
pp. 154-162 ◽  
Author(s):  
Edmond K Kabagambe ◽  
Michael Y Tsai ◽  
Paul N Hopkins ◽  
Jose M Ordovas ◽  
James M Peacock ◽  
...  

Abstract Background: Different fatty acids may vary in their effect on the metabolic syndrome (MetS). We tested whether fatty acid classes measured in erythrocytes are associated with the MetS or its components. Methods: Included were men [n = 497; mean (SD) age, 49 (16) years] and women [n = 539; age, 48 (16) years] from 187 families in a National Heart, Lung, and Blood Institute (NHLBI) family study of the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) conducted in Utah and Minnesota. We used gas chromatography to measure erythrocyte fatty acids and obtained data on potential confounding variables from interviewer-administered questionnaires. Results: The prevalence of the MetS as defined by the updated Adult Treatment Panel III criteria was 36.8% in Utah and 39.6% in Minnesota (P &gt;0.05). In a multivariate model that included 4 fatty acid classes, covariates, and pedigree as a random effect, the odds ratios (95% confidence interval) for the MetS in the 1st, 2nd, 3rd, and 4th quartile of polyunsaturated fatty acids were 1.00, 0.72 (0.47–1.10), 0.67 (0.43–1.05), and 0.39 (0.24–0.64), respectively (P for trend = 0.0002). For the corresponding quartiles of saturated fatty acids, the odds ratios were 1.00, 1.19 (0.77–1.84), 1.48 (0.94–2.34), and 1.63 (1.01–2.63), respectively (P for trend = 0.03). Unlike n6 fatty acids, which showed an inverse association (P &lt;0.05) with MetS, n3, trans, and monounsaturated fatty acids were not associated with the MetS (P &gt;0.05). We observed significant correlations (P &lt;0.05) between fatty acid classes, insulin, and components of the MetS. Conclusions: Polyunsaturated fats are inversely associated with the MetS, whereas saturated fatty acids are positively associated with the MetS, probably through their effect on lipids, adiposity, insulin, and blood pressure.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1706-1706
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Catherine B Chan ◽  
Mehdi Hedayati ◽  
Mohammad Safarian ◽  
...  

Abstract Objectives The fat mass and obesity-associated gene (FTO) is a functional candidate gene for type 2 diabetes mellitus (T2DM) and metabolic syndrome, based on evidence from genome-wide association studies (GWAS) that linked it to obesity and metabolic disorders. The FTO gene regulates energy expenditure and intake. We aimed to determine how fatty acid species measured in plasma and dietary intake associate with FTO gene expression in subcutaneous and visceral adipose tissues. Methods In this study, 97 participants aged ≥18 years were selected from patients admitted to the hospital for abdominal surgeries. These underlying disorders leading to surgeries were not expected to alter the habitual dietary intake of participants. Participants with diagnosed diabetes or cancer, under treatment of dyslipidemia or dysglycemia, and being on prescribed or any special diets were excluded. Habitual dietary intake of participants was collected using a valid and reliable food frequency questionnaire (FFQ), from which the intake of fatty acids was quantified. Plasma fatty acids were assessed by gas-liquid chromatography. The mRNA expression of the FTO gene in visceral and subcutaneous adipose tissues obtained by biopsy was measured by real-time quantitative PCR. Results After adjusting for age, HOMA-IR and body mass index, total fatty acid intake was significantly associated with FTO gene expression in visceral (STZβ = 0.208, P = 0.037) and subcutaneous (STZβ = 0.236, P = 0.020) adipose tissues. Dietary intake of MUFA and PUFA had positive significant associations with the expression of FTO in visceral (STZβ = 0.227, P = 0.023; STZβ = 0.346, P &lt; 0.001, respectively) and subcutaneous (STZβ = 0.227, P = 0.026; STZβ = 0.274, P = 0.006, respectively) adipose tissues. There were no significant associations between plasma fatty acids and FTO mRNA expression in either subcutaneous or visceral adipose tissues. Conclusions The association of dietary total fatty acids, MUFA, and PUFA with FTO gene expression in both adipose tissues highlight the importance of dietary fatty acids composition along with total fat intake in relation to FTO gene expression. Funding Sources This study was funded by Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.


2015 ◽  
Vol 27 (4) ◽  
pp. 593 ◽  
Author(s):  
Tawiwan Pantasri ◽  
Linda L. Wu ◽  
M. Louise Hull ◽  
Thomas R. Sullivan ◽  
Michael Barry ◽  
...  

Obesity is associated with decreased pregnancy rates due, in part, to compromised oocyte quality. The aim of the present cross-sectional study of 84 women undergoing oocyte aspiration was to: (1) compare insulin, lipids and glucose in follicular fluid with serum; (2) determine whether increased body mass index (BMI) and waist circumference, hyperinsulinaemia, dyslipidaemia or metabolic syndrome altered follicular fluid metabolites; and (3) determine relative lipid content in oocytes to reveal any influence of these parameters on oocyte quality and IVF outcomes. Insulin, glucose, triglyceride and free fatty acids were lower in follicular fluid than blood and not strictly correlated between compartments. Insulin, glucose and triglyceride positively correlated with increasing BMI and waist circumference in blood and follicular fluid. Insulin increased in follicular fluid in association with metabolic syndrome. Free fatty acid composition analysis showed saturated fatty acids, particularly palmitic and stearic acid, to be more prevalent in follicular fluid than blood. There were no associations between follicular fluid metabolites or oocyte lipid content and clinical outcomes; however, oocyte immaturity correlated with follicular fluid glucose and fatty acid levels, as well as metabolic syndrome. The present study confirms that the human ovarian follicular environment surrounding the oocyte exhibits a unique metabolite profile compared with blood, with distinct localisation of lipids within follicular fluid and oocytes.


2020 ◽  
Author(s):  
Faezeh Abaj ◽  
Khadijeh Mirzaei

Abstract Background: Metabolic syndrome (MetS) is related with all-cause mortality. Caveolin-1 (Cav-1) has been widely studied in dyslipidemia, and several studies have indicated that Cav-1 genetic variations may correlate with dietary intake of fatty acids. The aim of the current study was therefore to evaluate the interaction of Cav-1 rs3807992 with types of dietary fatty acid in MetS risk factor status Methods: This cross-sectional study was carried out on 404 overweight and obese females. Dietary intake was obtained from a 147-item FFQ. The CAV-1 genotype was measured using the PCR-RFLP method. Anthropometric values and serum levels (TC, LDL, HDL, TG, FBS) were measured by standard methods. Results: It was observed that the (AA+AG) group had significantly higher BMI, WC and DBP (P=0.02, P=0.02 and P=0.01, respectively) and lower serum LDL, HDL and TC (P < 0.05) than the GG group. It was found that A allele carriers were at higher odds of MetS (P= 0.01), abdominal obesity (P=0.06), increased TG concentration (P=0.01), elevated blood pressure (BP) (P=0.01), increased glucose concentration (P=0.45), and decreased HDL-cholesterol concentration (P=0.03). Moreover, the interaction of Cav-1 and SFA intake was significant in terms of MetS (P=0.01), LDL (P=0.03), DBP (P=0.01) and LDL/HDL (P=0.05). Additionally, the (AA+AG) group was significantly related to PUFA intake in terms of MetS (P=0.04), TG (P=0.02), glucose (P=0.02) and HOMA-IR (P= 0.01). Conclusions: Higher PUFA consumption might attenuate the Cav-1 rs3807992 associations with MetS, and individuals with greater genetic predisposition appeared to have a higher risk of MetS, associated with higher SFA consumption To date, studies on this polymorphism have been animal studies and have not been performed on healthy and obese human society For the first time , this study provides information on the interaction of different fatty acids with the Caveolin gene, which is functionally effective in lipid metabolism


Author(s):  
Faezeh Abaj ◽  
khadiheh MIRZAE

Background: Metabolic syndrome (MetS) is related with all-cause mortality. Caveolin-1 (Cav-1) has been widely studied in dyslipidemia, and several studies have indicated that Cav-1 genetic variations may correlate with dietary intake of fatty acids. The aim of the current study was therefore to evaluate the interaction of Cav-1 rs3807992 with types of dietary fatty acid in MetS risk factor status Methods: This cross-sectional study was carried out on 404 overweight and obese females. Dietary intake was obtained from a 147-item FFQ. The CAV-1 genotype was measured using the PCR-RFLP method. Anthropometric values and serum levels (TC, LDL, HDL, TG, FBS) were measured by standard methods. Results: It was observed that the (AA+AG) group had significantly higher BMI, WC and DBP (P=0.02, P=0.02 and P=0.01, respectively) and lower serum LDL, HDL and TC (P < 0.05) than the GG group. It was found that A allele carriers were at higher odds of MetS (P= 0.01), abdominal obesity (P=0.06), increased TG concentration (P=0.01), elevated blood pressure (BP) (P=0.01), increased glucose concentration (P=0.45), and decreased HDL-cholesterol concentration (P=0.03). Moreover, the interaction of Cav-1 and SFA intake was significant in terms of MetS (P=0.01), LDL (P=0.03), DBP (P=0.01) and LDL/HDL (P=0.05). Additionally, the (AA+AG) group was significantly related to PUFA intake in terms of MetS (P=0.04), TG (P=0.02), glucose (P=0.02) and HOMA-IR (P= 0.01). Conclusions: Higher PUFA consumption might attenuate the Cav-1 rs3807992 associations with MetS, and individuals with greater genetic predisposition appeared to have a higher risk of MetS, associated with higher SFA consumption To date, studies on this polymorphism have been animal studies and have not been performed on healthy and obese human society For the first time , this study provides information on the interaction of different fatty acids with the Caveolin gene, which is functionally effective in lipid metabolism


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Author(s):  
Katja Lehnert ◽  
Mamun M. Rashid ◽  
Benoy Kumar Barman ◽  
Walter Vetter

AbstractNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2102
Author(s):  
Małgorzata Elżbieta Zujko ◽  
Marta Rożniata ◽  
Kinga Zujko

Modification of lifestyle, including healthy nutrition, is the primary approach for metabolic syndrome (MetS) therapy. The aim of this study was to estimate how individual nutrition intervention affects the reduction of MetS components. Subjects diagnosed with MetS were recruited in the Lomza Medical Centre. The study group consisted of 90 participants and was divided into one intervention group (individual nutrition education group (INEG)) and one control group (CG). The research was conducted over 3 months. The following measurements were obtained during the first visit and after completion of the 3 months intervention: body mass, waist circumference, body composition, blood pressure, fasting glucose, and blood lipids. Dietary assessments were performed before and post-intervention using 3-day 24-h dietary recalls. Dietary knowledge was evaluated with the KomPAN questionnaire. The total polyphenol content of the diet was calculated. Sociodemographic and lifestyle characteristics were collected from a self-reported questionnaire. The physical activity was assessed by the short version of the International Physical Activity Questionnaire (IPAQ). It was found that the individual nutrition education was an effective method to improve the knowledge, dietary habits, and physical activity of the study participants. The modification of the diet in terms of higher intake of polyphenols (flavonoids and anthocyanins), fiber, polyunsaturated fatty acids (PUFA), PUFA n-3, and lower intake of saturated fatty acids (SFA) had a significant impact on the improvement of some MetS risk factors (waist circumference, fasting glucose, and HDL-cholesterol).


Sign in / Sign up

Export Citation Format

Share Document