scholarly journals Post-combustion slipstream CO2-capture test facility at Jiangyou Power Plant, Sichuan, China: facility design and validation using 30% wt monoethanolamine (MEA) testing

Clean Energy ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 107-119
Author(s):  
Baodeng Wang ◽  
Qian Cui ◽  
Guoping Zhang ◽  
Yinhua Long ◽  
Yongwei Sun ◽  
...  

Abstract Given the dominant share of coal in China’s energy-generation mix and the fact that >50% of the power plants in the country are currently <15 years old, efforts to significantly reduce China’s CO2 footprint will require the deployment of CO2 capture across at least part of its fleet of coal-fired power plants. CO2-capture technology is reaching commercial maturity, but it is still necessary to adapt the technology to regional conditions, such as power-plant design and flexible operation in the China context. Slipstream facilities provide valuable field data to support the commercialization of CO2 capture. We have built a slipstream facility at Jiangyou power plant in Sichuan that will allow us to explore China-relevant issues, especially flexible operation, over the next few years. We plan to share our results with the broader CO2-capture and CO2-storage (CCS) community to accelerate the deployment of CCS in China. This paper describes the design of the slipstream facility and presents results from our steady-state qualification tests using a well-studied benchmark solvent: 30% wt monoethanolamine (MEA). The results from our MEA tests compare favorably to results reported from other slipstream-test facilities around the world, allowing us to commission our system and establish a reference baseline for future studies.

Clean Energy ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 742-755
Author(s):  
Qian Cui ◽  
Baodeng Wang ◽  
Xinglei Zhao ◽  
Guoping Zhang ◽  
Zhendong He ◽  
...  

Abstract Membrane-based separation technologies have the potential to lower the cost of post-combustion CO2 capture from power-plant flue gases through reduced energy and capital costs relative to conventional solvent approaches. Studies have shown promise under controlled conditions, but there is a need for data on performance and reliability under field conditions. Coal-fired power plants in China operate in a dynamic manner, with increases and decreases in output causing changes in flue-gas composition. In this paper, we describe the first field test of a membrane-based post-combustion CO2-capture system connected to a dynamically operating power plant in China. We report the performance of a Membrane Technology Research, Inc. (MTR) PolarisTM membrane-based capture system over a range of plant operating loads ranging from 54% to 84% and conducted an operational stability test over a 168-h period during which the power plant was operating at an average load of 55%, but ramped as high as 79% and as low as 55%. Our results confirm the ability of a membrane capture system to operate effectively over a wide range of host-plant operating conditions, but also identity several issues related to plant integration, system control and resilience in the face of host-plant upsets that require attention as membrane separation systems move towards commercial use.


2021 ◽  
Vol 11 (11) ◽  
pp. 4974
Author(s):  
Tran X. Phuoc ◽  
Mehrdad Massoudi

To our knowledge, the potential use of CO2 as a heat-transmitting fluid for cooling applications in power plants has not been explored very extensively. In this paper, we conduct a theoretical analysis to explore the use of CO2 as the heat transmission fluid. We evaluate and compare the thermophysical properties of both dry air and CO2 and perform a simple analysis on a steam-condensing device where steam flows through one of the flow paths and the cooling fluid (CO2 or air) is expanded from a high-pressure container and flows through the other. Sample calculations are carried out for a saturated-vapor steam at 0.008 MPa and 41.5 °C with the mass flow rate of 0.01 kg/s. The pressure of the storage container ranges from 1 to 5 MPa, and its temperature is kept at 35 °C. The pressure of the cooling fluid (CO2 or dry air) is set at 0.1 MPa. With air as the heat-removing fluid, the steam exits the condensing device as a vapor-liquid steam of 53% to 10% vapor for the container pressure of 1 to 5 MPa. With CO2 as the heat-removing fluid, the steam exits the device still containing 44% and 7% vapor for the container pressure of 1 MPa and 2 MPa, respectively. For the container pressure of 3 MPa and higher, the steam exits the device as a single-phase saturated liquid. Thus, due to its excellent Joule–Thomson cooling effect and heat capacity, CO2 is a better fluid for power plant cooling applications. The condensing surface area is also estimated, and the results show that when CO2 is used, the condensing surface is 50% to 60% less than that when dry air is used. This leads to significant reductions in the condenser size and the capital costs. A rough estimate of the amount of CO2 that can be stored and utilized is also carried out for a steam power plant which operates with steam with a temperature of 540 °C (813 K) and a pressure of 10 MPa at the turbine inlet and saturated-vapor steam at 0.008 MPa at the turbine outlet. The results indicate that if CO2 is used as a cooling fluid, CO2 emitted from a 1000 MW power plant during a period of 250 days could be stored and utilized.


2019 ◽  
Vol 158 ◽  
pp. 4810-4815 ◽  
Author(s):  
Peizhi Liao ◽  
Xiao Wu ◽  
Yiguo Li ◽  
Meihong Wang ◽  
Jiong Shen ◽  
...  

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Talat Ozden

AbstractThe world is still heavily using nonconventional energy sources, which are worryingly based on carbon. The step is now alternative energy sources hoping that they will be more environmentally friendly. One of the important energy conversion forms by using these sources is photovoltaic solar systems. These type of power plants is on the increase in everyday on the world. Before investment a solar power plant in a specified region, a techno-economic analyse is performed for that power plant by using several meteorological data like solar irradiance and ambient temperature. However, this analyses generally lacks evaluation on effects of climatic and geographical conditions. In this work, 5 years of data of 27 grid-connected photovoltaic power plants are investigated, which are installed on seven different climate types in Turkey. Firstly, the power plants are categorized considering the tilt angles and Köppen–Gieger climate classification. The performance evaluations of the plants are mainly conducted using monthly average efficiencies and specific yields. The monthly average efficiencies, which were classified using the tilts and climate types were from 12 to 17%, from 12 to 16% and from 13 to 15% for tilts 30°/10°, 25° and 20°, respectively. The variation in the specific yields decrease with elevation as y(x) =  − 0.068x + 1707.29 (kWh/kWp). As the performances of photovoltaic systems for some locations within the Csb climatic regions may relatively lower than some other regions with same climate type. Thus, techno-economic performance for PVPP located in this climate classification should be carefully treated.


Author(s):  
Paul S. Weitzel

Babcock & Wilcox Power Generation Group, Inc. (B&W) has received a competitively bid award from the United States (U.S.) Department of Energy to perform the preliminary front-end engineering design of an advanced ultra-supercritical (A-USC) steam superheater for a future A-USC component test program (ComTest) achieving 760C (1400F) steam temperature. The current award will provide the engineering data necessary for proceeding to detail engineering, manufacturing, construction and operation of a ComTest. The steam generator superheater would subsequently supply the steam to an A-USC intermediate pressure steam turbine. For this study the ComTest facility site is being considered at the Youngstown Thermal heating plant facility in Youngstown, Ohio. The ComTest program is important because it would place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide initial hands-on training experience. Preliminary fabrication, construction and commissioning plans are to be developed in the study. A follow-on project would eventually provide a means to exercise the complete supply chain events required to practice and refine the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants would then be able to transfer knowledge and recommendations to the industry. ComTest is conceived as firing natural gas in a separate standalone facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the U.S. Components at suitable scale in ComTest provide more assurance before applying them to a full size A-USC demonstration plant. The description of the pre-front-end engineering design study and current results will be presented.


1999 ◽  
Author(s):  
Alejandro Zaleta-Aguilar ◽  
Armando Gallegos-Muñoz ◽  
Antonio Valero ◽  
Javier Royo

Abstract This work builds on the previous work on “Exergoeconomics Fuel-Impact” developed by Torres (1991), Valero et. al. (1994), and compares it with respect to the Performance Test Code (PTC’s) actually applied in power plants (ASME/ANSI PTC-6, 1970). With the objective of proposing procedures for PTC’s in power plant’s based on an exergoeconomics point of view. It was necessary to validate the Fuel-Impact Theories, and improve the conceptual expression, in order to make it more applicable to the real conditions in the plant. By mean of a program using simulation and field data, it was possible to validate and compare the procedures. This work has analyzed an example of a 110 MW Power Plant, in which all the exergetic costs have been determined for the steam cycle, and a fuel-impact analysis has been developed for the steam turbines at the design and off-design conditions. The result of the fuel-impact analysis is compared with respect to a classical procedure related in ASME-PTC-6.


Author(s):  
Xing L. Yan ◽  
Lawrence M. Lidsky

High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants, to permit use of the world’s most abundant and secure energy source. This paper presents a newly-conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45% net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.


Author(s):  
Stuart M. Cohen ◽  
John Fyffe ◽  
Gary T. Rochelle ◽  
Michael E. Webber

Coal consumption for electricity generation produces over 30% of U.S. carbon dioxide (CO2) emissions, but coal is also an available, secure, and low cost fuel that is currently utilized to meet roughly half of America’s electricity demand. While the world transitions from the existing fossil fuel-based energy infrastructure to a sustainable energy system, carbon dioxide capture and sequestration (CCS) will be a critical technology that will allow continued use of coal in an environmentally acceptable manner. Techno-economic analyses are useful in understanding the costs and benefits of CCS. However, typical techno-economic analyses of post-combustion CO2 capture systems assume continuous operation at a high CO2 removal, which could use 30% of pre-capture electricity output and require new capacity installation to replace the output lost to CO2 capture energy requirements. This study, however, considers the inherent flexibility in post-combustion CO2 capture systems by modeling power plants that vary CO2 capture energy requirements in order to increase electricity output when economical under electricity market conditions. A first-order model of electricity dispatch and a competitive electricity market is used to investigate flexible CO2 capture in response to hourly electricity demand variations. The Electric Reliability Council of Texas (ERCOT) electric grid is used as a case study to compare plant and grid performance, economics, and CO2 emissions in scenarios without CO2 capture to those with flexible or inflexible CO2 capture systems. Flexible CO2 capture systems can choose how much CO2 to capture based on the competition between CO2 and electricity prices and a desire to either minimize operating costs or maximize operating profits. Coal and natural gas prices have varying degrees of predictability and volatility, and the relative prices of these fuels have a major impact on power plant operating costs and the resulting plant dispatch sequence. Because the chosen operating point in a flexible CO2 capture system affects net power plant efficiency, fuel prices also influence which CO2 capture operating point may be the most economical and the resulting dispatch of power plants with CO2 capture. Several coal and natural gas price combinations are investigated to determine their impact on flexible CO2 capture operation and the resulting economic and environmental impacts at the power plant and electric grid levels. This study investigates the costs and benefits of flexible CO2 capture in a framework of a carbon-constrained future where the effects of major energy infrastructure changes on fuel prices are not entirely clear.


Sign in / Sign up

Export Citation Format

Share Document