scholarly journals Rapid Molecular Diagnostics to Inform Empiric Use of Ceftazidime/Avibactam and Ceftolozane/Tazobactam Against Pseudomonas aeruginosa: PRIMERS IV

2018 ◽  
Vol 68 (11) ◽  
pp. 1823-1830 ◽  
Author(s):  
Scott R Evans ◽  
Thuy Tien T Tran ◽  
Andrea M Hujer ◽  
Carol B Hill ◽  
Kristine M Hujer ◽  
...  

AbstractBackgroundOvercoming β-lactam resistance in pathogens such as Pseudomonas aeruginosa is a major clinical challenge. Rapid molecular diagnostics (RMDs) have the potential to inform selection of empiric therapy in patients infected by P. aeruginosa.MethodsIn this study, we used a heterogeneous collection of 197 P. aeruginosa that included multidrug-resistant isolates to determine whether 2 representative RMDs (Acuitas Resistome test and VERIGENE gram-negative blood culture test) could identify susceptibility to 2 newer β-lactam/β-lactamase inhibitor (BL-BLI) combinations, ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (TOL/TAZO).ResultsWe found that the studied RMD platforms were able to correctly identify BL-BLI susceptibility (susceptibility sensitivity, 100%; 95% confidence interval [CI], 97%, 100%) for both BLs-BLIs. However, their ability to detect resistance to these BLs-BLIs was lower (resistance sensitivity, 66%; 95% CI, 52%, 78% for TOL/TAZO and 33%; 95% CI, 20%, 49% for CZA).ConclusionsThe diagnostic platforms studied showed the most potential in scenarios where a resistance gene was detected or in scenarios where a resistance gene was not detected and the prevalence of resistance to TOL/TAZO or CZA is known to be low. Clinicians need to be mindful of the benefits and risks that result from empiric treatment decisions that are based on resistance gene detection in P. aeruginosa, acknowledging that such decisions are impacted by the prevalence of resistance, which varies temporally and geographically.

2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ayesha Khan ◽  
William C. Shropshire ◽  
Blake Hanson ◽  
An Q. Dinh ◽  
Audrey Wanger ◽  
...  

ABSTRACT We report our clinical experience treating a critically ill patient with polymicrobial infections due to multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in a 56-year-old woman who received health care in India and was also colonized by Candida auris. A precision medicine approach using whole-genome sequencing revealed a multiplicity of mobile elements associated with NDM-1, NDM-5, and OXA-181 and, supplemented with susceptibility testing, guided the selection of rational antimicrobial therapy.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 67 ◽  
Author(s):  
Ahmed Zikri ◽  
Kamal El Masri

Infections, with multidrug-resistant Pseudomonas aeruginosa, are a major concern in the pediatric intensive care unit, especially in immunocompromised patients. Some of these strains are resistant to all beta-lactams, including carbapenems, leaving very limited treatment options remaining. These options include aminoglycosides and colistin, both of which have poor pharmacokinetic profiles with significant toxicities. Newer beta-lactam/beta-lactamase inhibitor combinations offer additional novel options to treat such infections, given their good pharmacokinetic profiles and activity against multi-drug resistant strains. Ceftolozane/tazobactam is a novel cephalosporin/beta-lactamase inhibitor combination approved in 2014. The drug demonstrates good activity against multidrug-resistant P. aeruginosa strains, including those resistant to all other antibiotics. Ceftolozane/tazobactam is currently approved in adult patients 18 years and older only. There are very limited data on its pharmacokinetic profile and clinical utility in the pediatric population. We report the use of ceftolozane/tazobactam to successfully treat pneumonia caused by multidrug-resistant P. aeruginosa in a pediatric patient with combined immunodeficiency syndrome.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Melissa D. Barnes ◽  
Christopher R. Bethel ◽  
Jim Alsop ◽  
Scott A. Becka ◽  
Joseph D. Rutter ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a prevalent and life-threatening Gram-negative pathogen. Pseudomonas -derived cephlosporinase (PDC) is the major inducible cephalosporinase in P. aeruginosa . In this investigation, we show that relebactam, a diazabicyclooctane β-lactamase inhibitor, potently inactivates PDC-3, with a k 2 / K of 41,400 M −1 s −1 and a k off of 0.00095 s −1 . Relebactam restored susceptibility to imipenem in 62% of multidrug-resistant P. aeruginosa clinical isolates, while only 21% of isolates were susceptible to imipenem-cilastatin alone. Relebactam promises to increase the efficacy of imipenem-cilastatin against P. aeruginosa .


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Melissa D. Barnes ◽  
Magdalena A. Taracila ◽  
Joseph D. Rutter ◽  
Christopher R. Bethel ◽  
Ioannis Galdadas ◽  
...  

ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations.


2021 ◽  
Author(s):  
Nathan B Pincus ◽  
Monica Rosas-Lemus ◽  
Samuel WM Gatesy ◽  
Ludmilla A. Shuvalova ◽  
Joseph Brunzelle ◽  
...  

Resistance to antipseudomonal penicillins and cephalosporins is often driven by the overproduction of the intrinsic β-lactamase AmpC. However, OXA-10-family β-lactamases are a rich source of resistance in Pseudomonas aeruginosa. OXA β-lactamases have a propensity for mutation leading to extended spectrum cephalosporinase and carbapenemase activity. In this study, we identified isolates from a subclade of the multidrug-resistant (MDR) high risk clonal complex CC446 with resistance to ceftazidime. Genomic analysis revealed that these isolates harbored a plasmid containing a novel allele of blaOXA-10, named blaOXA-935, which was predicted to produce an OXA-10 variant with two amino acid substitutions: an aspartic acid instead of glycine at position 157 and a serine instead of phenylalanine at position 153. The G157D mutation, present in OXA-14, is associated with resistance to ceftazidime. Deletion of blaOXA-935 restored sensitivity to ceftazidime and susceptibility profiling of P. aeruginosa laboratory strains expressing blaOXA-935 revealed that OXA-935 conferred ceftazidime resistance. To better understand the impact of the variant amino acids, we determined the crystal structures of OXA-14 and OXA-935. In contrast, both monomers of OXA-935 were decarbamylated at K70, and the F153S mutation conferred increased flexibility to the omega (Ω) loop. Compared to OXA-14, the catalytic efficiency of OXA-935 for nitrocefin was significantly reduced. Amino acid changes that confer extended spectrum cephalosporinase activity to OXA-10-family β-lactamases are concerning given rising reliance on novel β-lactam/β-lactamase inhibitor combinations such as ceftolozane-tazobactam and ceftazidime-avibactam to treat MDR P. aeruginosa infections.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S325-S325
Author(s):  
Elias M Mullane ◽  
Lindsay M Avery ◽  
David P Nicolau

Abstract Background Pseudomonas aeruginosa (PSA) is an opportunistic pathogen known to cause complications in critically ill patients worldwide. In those at risk of infection with multidrug-resistant strains (MDR-PSA), dual antibiotic therapy is often considered. However, this practice may contribute to rising resistance rates and poor outcomes if empirical selection is suboptimal. WCK 5222 (cefepime/zidebactam), a novel β-lactam/β-lactam enhancer, may offer a solution. Methods Minimum inhibitory concentrations (MICs) were determined for WCK 5222, amikacin (AMK), fosfomycin (FOF), cefepime (FEP), ceftolozane/tazobactam (C/T), and meropenem (MEM) against 18 clinical PSA isolates using gradient diffusion strip (GDS) methods. Activities of FEP, C/T, and MEM in combination with AMK and FOF were assessed using GDS for isolates nonsusceptible to the β-lactam (MICs >8 mg/L, >4/4 mg/L, and >2 mg/L, respectively). Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Instances of restored β-lactam susceptibility when tested in combination were compared with the proportion of WCK 5222 MICs ≤ 8 mg/L. Results WCK 5222 MICs ranged from 2 to 32 mg/L (MIC50, 8 mg/L). Rates of susceptibility were: AMK (67%), FOF (44%, MIC ≤ 64 mg/L), FEP (6%), C/T (33%), MEM (0%). Combinations with C/T most frequently demonstrated synergy (C/T-FOF, 42%; C/T-AMK, 33%) and restored C/T susceptibility was observed in 42% of assessments with FOF and in 50% with AMK. For FEP combinations, synergy was observed in 29% and 18% of assessments with FOF and AMK, respectively, with restored susceptibility in 6% for both combinations. Synergy occurred in 11% and 6% of assessments of MEM with FOF and AMK, respectively, with zero instances of restored susceptibility. In total, β-lactam susceptibility was restored in 14% (13/94) of combinations compared with 78% (14/18) of WCK 5222 MICs ≤ 8 mg/L. Conclusion In a selection of MDR-PSA isolates that included carbapenem- and C/T-resistant strains, WCK 5222 MICs ≤ 8 mg/L (cefepime susceptible) were observed more frequently than restoration of susceptibility in select β-lactams in combination with FOF or AMK. WCK 5222 monotherapy may offer enhanced coverage of MDR-PSA over empirically selected combination therapies. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 34 (1) ◽  
Author(s):  
Dafna Yahav ◽  
Christian G. Giske ◽  
Alise Grāmatniece ◽  
Henrietta Abodakpi ◽  
Vincent H. Tam ◽  
...  

SUMMARY The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam–β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa. Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa. Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales. Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa. Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii. Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S785-S785
Author(s):  
Emily C Bodo ◽  
Aisling Caffrey ◽  
Vrishali Lopes ◽  
Jaclyn A Cusumano ◽  
Laura A Puzniak ◽  
...  

Abstract Background Multidrug-resistant (MDR) Pseudomonas aeruginosa is a challenging pathogen to treat. Ceftolozane/tazobactam (C/T) is a combination cephalosporin and β-lactamase inhibitor that has demonstrated activity against MDR P. aeruginosa, including carbapenem-resistant isolates. The objective of this study was to evaluate multidrug resistance in P. aeruginosa isolates obtained from patients treated with C/T across the Veterans Affairs (VA) Healthcare System nationally. Methods Hospitalized patients who received at least 1 dose of CT between January 2015 and April 2018 and had a positive P. aeruginosa culture were included in this retrospective study. Culture source and antimicrobial susceptibility reports were assessed for each P. aeruginosa isolate. Isolates were categorized as multidrug-resistant based on the Centers for Disease Control (CDC) definition. Resistance rates were categorized by source of culture. Results We identified 174 positive P. aeruginosa cultures among 154 patients who received at least one dose of C/T during the study period. The most common sources of isolates were lung (40% of patients), urine (21%), skin and soft tissue (15%), blood (14%), and bone/joint (14%). Most patients (98.1%) had isolates that were MDR, with high rates of carbapenem (84.4%), extended-spectrum cephalosporin (82.5%), and fluoroquinolone (79.9%) resistance. In this cohort, 50.6% of patients received at least one antibiotic prior to initiating C/T to which their clinical culture was not susceptible. Conclusion Antibiotic resistance was high in this cohort of patients with P. aeruginosa, and as a result, use of non-susceptible antibiotics occurred in 50.6% of patients before C/T was started. The high carbapenem resistance rates are of great clinical concern, but highlight an area of utilization for C/T given its activity against carbapenem-resistant P. aeruginosa. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document