DOZ047.72: Three-dimensional printing for preoperative planning of open laryngotracheal surgery

2019 ◽  
Vol 32 (Supplement_1) ◽  
Author(s):  
G Fishman ◽  
O Wasserzug ◽  
P Berman ◽  
E Golden ◽  
A DeRow

Abstract Background Three-dimensional (3D) printing is being employed in a variety of surgical specialties to improve patient care. These models enable preoperative in vitro planning, advanced resident training, and better patient education. 3D models of the tracheobronchial tree that can simulate bronchoscopy and 3D printed cricoid cartilage models for balloon dilation training have been reported. A 3D model for preoperative planning of open laryngotracheal surgery has not been reported. Objectives The objective of this study was to report preliminary results with the employment of 3D printing technology for preoperative planning of laryngotracheoplasty (LTP) and cricotracheal resection (CTR). Materials and Methods Actual-size 3D models of the upper airway, from the level of the base of tongue to the level of the carina, have been created by the surgical 3D printing lab in the medical center. The models were based on computed tomography of two patients who were scheduled for LTP and CTR. The models were composed of several elements: the framework of the larynx and the trachea, the air column, the cannula, and the peri-stomal region. Results Two models were created, a model of a patient with grade III subglottic stenosis who subsequently underwent LTP and a model of a patient with grade IV subglottic stenosis who subsequently underwent CTR and end to end anastomosis. The 3D models were found to be useful for preoperative planning of the incision site in the trachea, the status of the tracheal and laryngeal framework, the length of the diseased segment, and the length of the rib cartilage graft to be harvested. Conclusions The preliminary results of this study imply that 3D models can be useful for preoperative planning of open laryngotracheal surgery. Further experience is required to establish its efficacy, the optimal model design, and cost effectiveness.

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4065
Author(s):  
Tiziana Fischetti ◽  
Gemma Di Pompo ◽  
Nicola Baldini ◽  
Sofia Avnet ◽  
Gabriela Graziani

Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal–cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Hao Wang ◽  
Hongning Song ◽  
Yuanting Yang ◽  
Quan Cao ◽  
Yugang Hu ◽  
...  

Abstract Three-dimensional (3D) printing is widely used in medicine. Most research remains focused on forming rigid anatomical models, but moving from static models to dynamic functionality could greatly aid preoperative surgical planning. This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system. Such models allow simulation of surgical procedures under mock physiological conditions, and are; therefore, potentially very useful to clinical practice. For example, anatomical models of mitral regurgitation could provide a better display of lesion area, while dynamic 3D models could further simulate in vitro hemodynamics. Dynamic 3D models could also be used in setting standards for certain parameters for function evaluation, such as flow reserve fraction in coronary heart disease. As a bridge between medical image and clinical aid, 3D printing is now gradually changing the traditional pattern of diagnosis and treatment.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 742 ◽  
Author(s):  
Chiara Gardin ◽  
Letizia Ferroni ◽  
Christian Latremouille ◽  
Juan Carlos Chachques ◽  
Dinko Mitrečić ◽  
...  

Three dimensional (3D) printing, which consists in the conversion of digital images into a 3D physical model, is a promising and versatile field that, over the last decade, has experienced a rapid development in medicine. Cardiovascular medicine, in particular, is one of the fastest growing area for medical 3D printing. In this review, we firstly describe the major steps and the most common technologies used in the 3D printing process, then we present current applications of 3D printing with relevance to the cardiovascular field. The technology is more frequently used for the creation of anatomical 3D models useful for teaching, training, and procedural planning of complex surgical cases, as well as for facilitating communication with patients and their families. However, the most attractive and novel application of 3D printing in the last years is bioprinting, which holds the great potential to solve the ever-increasing crisis of organ shortage. In this review, we then present some of the 3D bioprinting strategies used for fabricating fully functional cardiovascular tissues, including myocardium, heart tissue patches, and heart valves. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro cardiovascular drug toxicity. Finally, we describe some applications of 3D printing in the development and testing of cardiovascular medical devices, and the current regulatory frameworks that apply to manufacturing and commercialization of 3D printed products.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xing Huang ◽  
Ni Fan ◽  
Hai-jun Wang ◽  
Yan Zhou ◽  
Xudong Li ◽  
...  

AbstractThe application of 3D printing in planning endoscopic endonasal transsphenoidal surgery is illustrated based on the analysis of patients with intracranial skull base diseases who received treatment in our department. Cranial computed tomography/magnetic resonance imaging data are attained preoperatively, and three-dimensional reconstruction is performed using MIMICS (Materialise, Leuven, Belgium). Models of intracranial skull base diseases are printed using a 3D printer before surgery. The models clearly demonstrate the morphologies of the intracranial skull base diseases and the spatial relationship with adjacent large vessels and bones. The printing time of each model is 12.52–15.32 h, and the cost ranges from 900 to 1500 RMB. The operative approach was planned in vitro, and patients recovered postoperatively well without severe complications or death. In a questionnaire about the application of 3D printing, experienced neurosurgeons achieved scores of 7.8–8.8 out of 10, while unexperienced neurosurgeons achieved scores of 9.2–9.8. Resection of intracranial skull base lesions is demonstrated to be well assisted by 3D printing technique, which has great potential in disclosing adjacent anatomical relationships and providing the required help to clinical doctors in preoperative planning.


2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5433
Author(s):  
Seung-Ho Shin ◽  
Jung-Hwa Lim ◽  
You-Jung Kang ◽  
Jee-Hwan Kim ◽  
June-Sung Shim ◽  
...  

The amount of photopolymer material consumed during the three-dimensional (3D) printing of a dental model varies with the volume and internal structure of the modeling data. This study analyzed how the internal structure and the presence of a cross-arch plate influence the accuracy of a 3D printed dental model. The model was designed with a U-shaped arch and the palate removed (Group U) or a cross-arch plate attached to the palate area (Group P), and the internal structure was divided into five types. The trueness and precision were analyzed for accuracy comparisons of the 3D printed models. Two-way ANOVA of the trueness revealed that the accuracy was 135.2 ± 26.3 µm (mean ± SD) in Group U and 85.6 ± 13.1 µm in Group P. Regarding the internal structure, the accuracy was 143.1 ± 46.8 µm in the 1.5 mm-thick shell group, which improved to 111.1 ± 31.9 µm and 106.7 ± 26.3 µm in the roughly filled and fully filled models, respectively. The precision was 70.3 ± 19.1 µm in Group U and 65.0 ± 8.8 µm in Group P. The results of this study suggest that a cross-arch plate is necessary for the accurate production of a model using 3D printing regardless of its internal structure. In Group U, the error during the printing process was higher for the hollowed models.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Andrew J. Hughes ◽  
Cathal DeBuitleir ◽  
Philip Soden ◽  
Brian O’Donnchadha ◽  
Anthony Tansey ◽  
...  

Revision hip arthroplasty requires comprehensive appreciation of abnormal bony anatomy. Advances in radiology and manufacturing technology have made three-dimensional (3D) representation of osseous anatomy obtainable, which provide visual and tactile feedback. Such life-size 3D models were manufactured from computed tomography scans of three hip joints in two patients. The first patient had undergone multiple previous hip arthroplasties for bilateral hip infections, resulting in right-sided pelvic discontinuity and a severe left-sided posterosuperior acetabular deficiency. The second patient had a first-stage revision for infection and recurrent dislocations. Specific metal reduction protocols were used to reduce artefact. The images were imported into Materialise MIMICS 14.12®. The models were manufactured using selective laser sintering. Accurate templating was performed preoperatively. Acetabular cup, augment, buttress, and cage sizes were trialled using the models, before being adjusted, and resterilised, enhancing the preoperative decision-making process. Screw trajectory simulation was carried out, reducing the risk of neurovascular injury. With 3D printing technology, complex pelvic deformities were better evaluated and treated with improved precision. Life-size models allowed accurate surgical simulation, thus improving anatomical appreciation and preoperative planning. The accuracy and cost-effectiveness of the technique should prove invaluable as a tool to aid clinical practice.


Sign in / Sign up

Export Citation Format

Share Document