scholarly journals The Eclosion of Rhagoletis pomonella (Diptera: Tephritidae) Under Different Chill Durations and Simulated Temperate and Tropical Conditions

2021 ◽  
Author(s):  
Lisa G Neven ◽  
Tewodros Wakie ◽  
Wee L Yee

Abstract The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is a serious pest of apple in North America that is subject to quarantine measures to prevent its spread to currently pest-free regions, including the tropics. How the fly may survive in warmer climates is unclear. Here, we studied the effects of exposing postchill puparia to simulated temperate and tropical environmental conditions on eclosion of R. pomonella from Washington State, U.S.A. Puparia were chilled for 0–30 wk at 3°C and then held under four postchill conditions: A = 23°C, 16:8 L:D, 40% RH; B = 26°C, 12:12 L:D, 80% RH; C = 26°C, 16:8 L:D, 80% RH; and D = 23°C, 12:12 L:D, 40% RH, with B and D representing tropical conditions and A and C temperate conditions. Within each chill duration, total numbers of flies eclosed were equally high in tropical treatment B and temperate treatment C, while they were lower in treatments A and D. Mean weeks of the first eclosion in treatments B and C were earlier than in treatment D; mean week of peak eclosion and 50% eclosion in treatments A, B, and C were earlier than in treatment D. Eclosion spans in treatments A, B, and D were generally shorter than in treatment C. Results suggest that if introduced into a humid tropical country, R. pomonella puparia from Washington State could produce adult flies, regardless of chill duration or lack of chilling during the pupal stage, but whether flies could establish there would require further study.

2020 ◽  
Author(s):  
Wee L Yee ◽  
Robert B Goughnour ◽  
Jeffrey L Feder

Abstract Closely related phytophagous insects that specialize on different host plants may have divergent responses to environmental factors. Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow (Diptera: Tephritidae) are sibling, sympatric fly species found in western North America that attack and mate on plants of Rosaceae (~60 taxa) and Caprifoliaceae (three taxa), respectively, likely contributing to partial reproductive isolation. Rhagoletis zephyria evolved from R. pomonella and is native to western North America, whereas R. pomonella was introduced there. Given that key features of the flies’ ecology, breeding compatibility, and evolution differ, we predicted that adult eclosion patterns of the two flies from Washington State, USA are also distinct. When puparia were chilled, eclosion of apple- and black hawthorn-origin R. pomonella was significantly more dispersed, with less pronounced peaks, than of snowberry-origin R. zephyria within sympatric and nonsympatric site comparisons. Percentages of chilled puparia that produced adults were ≥67% for both species. However, when puparia were not chilled, from 13.5 to 21.9% of apple-origin R. pomonella versus only 1.2% to 1.9% of R. zephyria eclosed. The distinct differences in eclosion traits of R. pomonella and R. zephyria could be due to greater genetic variation in R. pomonella, associated with its use of a wider range of host plants than R. zephyria.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8141
Author(s):  
Jenny Urbina ◽  
Tara Chestnut ◽  
Donelle Schwalm ◽  
Jenn Allen ◽  
Taal Levi

Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome in bats (WNS), has led to dramatic declines of bat populations in eastern North America. In the spring of 2016, WNS was first detected at several locations in Washington State, USA, which has prompted the need for large scale surveillance efforts to monitor the spread of Pd. Pd is typically detected in bats using invasive methods requiring capturing and swabbing individual bats. However, Pd can also be detected in guano, which may provide an efficient, affordable, and noninvasive means to monitor Pd in bats across North America. The widespread implementation of Pd surveillance in guano is hindered by substantial uncertainty about the probability of detecting Pd when present, and how this probability is influenced by the time since defecation, local environmental conditions, the amount of guano sampled, and the original concentration of DNA shed in the guano. In addition, the expected degradation rate of Pd DNA depends on whether the Pd DNA found in guano represents extracellular DNA fragments, intracellular DNA from dead Pd fungal cells, or from intracellular and viable Pd cells. While this is currently unknown, it has been posited that most environmental DNA, such as Pd found in guano long after defecation, is fragmented extracellular DNA. Using non-viable isolated DNA at precise quantities, we experimentally characterized the degradation rates of Pd DNA in guano samples. We spiked 450 guano samples with Pd gDNA in a 10-fold dilution series from 1 million to 1,000 fg and placed them in variable environmental conditions at five sites at Mount Rainier National Park in Washington State, which is a priority location for Pd surveillance. We evaluated DNA degradation over 70 days by quantifying the amount of DNA in samples collected every 14 days using real-time quantitative PCR (qPCR). Our sampling period was from July 10th to September 17th 2018 which overlaps with bat movement between summer roosts as well as movement from maternity colonies fall swarms. We detected Pd DNA in guano 56 and 70 days after inoculation with 1 million and 100,000 fg respectively, while the lowest quantity (1,000 fg) was detected until 42 days. Detection probability was variable among sites and lower where samples were left exposed without overhead cover. If Pd is shed as extracellular DNA in guano at quantities above 1,000 fg, then guano collection is likely to provide an effective tool for environmental screening of Pd that can be employed in an early detection and rapid response framework throughout Washington and other regions where this disease is rapidly emerging.


1995 ◽  
Vol 32 (12) ◽  
pp. 91-97 ◽  
Author(s):  
P. Y. Yang ◽  
M. Kuroshima

In order to develop a simple operation for an anaerobic treatment process for highly concentrated pig wastewater for small producers, a three-stage anaerobic treatment process was investigated. The system provided a series of mixing, homogenization, biological reaction and final stabilization of concentrated pig waste (total solid content of 8–10%). The process provided a stable operational performance, simple operational procedure and well stabilized sludge effluent. It was also found that the system is economically feasible in Hawaii. Compared to the other treatment processes for highly concentrated pig waste, this process is considered as an appropriate alternative for the application of the small producers in land limited and tropical conditions. Also, the present treatment system can be easily developed into a prefabricated package plant which can minimize the on-site labor and building costs.


2008 ◽  
Vol 70 (3) ◽  
pp. 426-432 ◽  
Author(s):  
R. Lee Lyman

AbstractFor more than fifty years it has been known that mammalian faunas of late-Pleistocene age are taxonomically unique and lack modern analogs. It has long been thought that nonanalog mammalian faunas are limited in North America to areas east of the Rocky Mountains and that late-Pleistocene mammalian faunas in the west were modern in taxonomic composition. A late-Pleistocene fauna from Marmes Rockshelter in southeastern Washington State has no modern analog and defines an area of maximum sympatry that indicates significantly cooler summers than are found in the area today. An earliest Holocene fauna from Marmes Rockshelter defines an area of maximum sympatry, including the site area, but contains a single tentatively identified taxon that may indicate slightly cooler than modern summers.


Author(s):  

Abstract A new distribution map is provided for Atropellis piniphila (Weir) Lohman & Cash. Hosts: Pine (Pinus). Information is given on the geographical distribution in NORTH AMERICA, Canada (Alberta, British Columbia, Saskatchewan), USA (Alabama, Arizona, Montana, New Mexico, Oregon, South Dakota, Washington State), (Idaho).


Author(s):  

Abstract A new distribution map is provided for Apple rubbery wood virus Prentice. Hosts: Apple (Malus pumila). Information is given on the geographical distribution in AFRICA, South Africa (Cape), ASIA, India (Uttar Pradesh), (Himachal Pradesh), AUSTRALASIA & OCEANIA, Australia, New Zealand, EUROPE, Austria, Britain, Denmark, Germany (E), Italy, Netherlands, Norway, Poland, Sweden, Switzerland, Yugoslavia, NORTH AMERICA, Canada (British Columbia), USA (Michigan, Missouri, New York, Washington State).


2021 ◽  
Author(s):  
Shane C. Miller ◽  
Diana P Baumann ◽  
M. Shane Merryman

The starlet sea anemone (Nematostella vectensis) is an emerging model organism, and we have maintained a colony at the Stowers Institute since 2007. Nematostella are known as a simple sea anemone, related to other cnidarians such as jellyfish and corals. Native to estuarine environments across the Atlantic coast of North America, from Novia Scotia to Florida, they encounter a variety of environmental conditions (e.g., temperature, salinity). Acknowledging that husbandry conditions and environmental parameters can impact research results we provide information about the housing, nutrition, maintenance, and health for our colony of Nematostella. This information will be applicable to any Nematostella housed in the facility in 2021.


2017 ◽  
Vol 155 (1) ◽  
pp. 203-208
Author(s):  
ISMAEL FERRUSQUÍA-VILLAFRANCA ◽  
VÍCTOR ADRIÁN PÉREZ-CRESPO ◽  
JOSÉ E. RUIZ-GONZÁLEZ ◽  
ENRIQUE MARTÍNEZ-HERNÁNDEZ ◽  
PEDRO MORALES-PUENTE

AbstractThe diet and habitat ofLeptomeryxsp. from the Late Uintan Yolomécatl Formation of NW Oaxaca, SE Mexico were inferred using dental enamel carbon and oxygen isotopic relationships, and compared with those of congeneric species from temperate North America. Results show thatLeptomeryxsp. fed on C3 plants and lived in open forest or forest/savanna ecotone. The palynoflora and co-occurrence of perissodactyls and artiodactyls that live in an environment like that ofLeptomeryxsupport this interpretation. Further, both records disclose that in NW Oaxaca (southern North America) tropical conditions prevailed at that time, unlike that of temperate North America.


Phytotaxa ◽  
2015 ◽  
Vol 213 (1) ◽  
pp. 70
Author(s):  
Kottai Muthu
Keyword(s):  
New Name ◽  

Justicia Linnaeus (1753: 15) is the largest genus of Acanthaceae (Wasshausen 2002). It comprises about 600 species (Graham 1988), distributed throughout the tropics and subtropics of both hemispheres, extending into the temperate regions of North America, with one species found as far north as Quebec in Canada (Wasshausen 1992a). In Brazil, the genus is represented by 128 species (Profice et al. 2015). Among them, Justicia andersonii Wasshausen (1992b: 666) is an illegitimate name, as it is a later homonym of J. andersonii Ramamoorthy (1976: 551). Therefore a new name, J. wasshausenii, is proposed as a replacement name for J. andersonii.


2012 ◽  
Vol 9 (8) ◽  
pp. 3113-3130 ◽  
Author(s):  
D. Lombardozzi ◽  
S. Levis ◽  
G. Bonan ◽  
J. P. Sparks

Abstract. Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.


Sign in / Sign up

Export Citation Format

Share Document