scholarly journals Phenotypic and genetic characterization of Pseudomonas aeruginosa isolate COP2 from the lungs of COPD patients in China

2019 ◽  
Vol 77 (4) ◽  
Author(s):  
Kelei Zhao ◽  
Yang Yuan ◽  
Jing Li ◽  
Wenjuan Pan ◽  
Chaochao Yan ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an important opportunistic pathogen normally associated with increasing morbidity and mortality of immunocompromised hosts with respiratory infections. The phenotypic and genetic features of P. aeruginosa from patients with chronic obstructive pulmonary disease (COPD) remain poorly understood. By using the sputum samples of 25 hospitalized COPD patients from the affiliated hospital of Southwest Medical University (China), we identified a P. aeruginosa isolate, COP2, which showed multiple antibiotic resistance and enhanced Pseudomonas quinolone signal (PQS) production but decreased motility, biofilm formation and virulence compared with the model strain PAO1. Importantly, COP2 harbored a substantial amount of mutations that might influence the functions of 1771 genes in the genome and the evolutionary status of this isolate was clearly distinct from the PAO1 lineage. Accordingly, COP2 had a discrepant transcriptional pattern relating to flagellar assembly, antibiotic resistance, biofilm and PQS production, and can increase the capacities of compound degradation in response to resource/space stresses. Therefore, the identification of COP2 in this study provides preliminary information regarding the genetic features and survival strategy of P. aeruginosa in colonizing COPD lungs and lays the foundations for further understanding of the pathogenic mechanisms of pseudomonal infections.

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2617
Author(s):  
Maite Sainz-Mejías ◽  
Irene Jurado-Martín ◽  
Siobhán McClean

Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.


Author(s):  
Parag Sharma

ABSTRACTBronchiectasis is a type of chronic obstructive pulmonary disease, defined as permanent abnormal dilation of bronchi due to vicious cycle of transmuralinfection and inflammation. Bronchiectasis is generally characterized by cough, wheeze, and dyspnea. Pathogens responsible for bronchiectasisinclude pathogens Haemophilus influenzae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus, and nontuberculousmycobacteria. Empirical antibiotic therapy and other drugs are used empirically in the management of bronchiectasis.Here, we discuss a case ofinfectious exacerbation of bronchiectasis successfully treated with an empirical use of ceftriaxone/sulbactam/disodium edetate-1034.Keywords: Bronchiectasis, Elores™, Ceftriaxone/sulbactam/disodium edetate-1034, Disodium edetate, Antibiotic resistance.


2021 ◽  
Vol 11 (3) ◽  
pp. 619-630
Author(s):  
Shafaa Munjal ◽  
Shalok Munjal ◽  
Jingya Gao ◽  
Vishwanath Venketaraman

Although there has been a drastic decline in the cases of Tuberculosis in the United States, the prevalence of infections caused by Mycobacterium avium Complex (MAC) has steadily increased in the past decades. Mycobacterium avium (M. avium) is one of the most abundant microorganisms in the MAC species. The mycobacterium genus is divided into two major groups: tuberculosis causing mycobacteria and non-tuberculous mycobacteria. MAC is most prominent among the non-tuberculous mycobacteria. MAC is an opportunistic pathogen that is present in soil, water, and droplets in the air. MAC infections can result in respiratory disease and can disseminate in affected patients. MAC infections are especially prevalent in patients with preexisting respiratory conditions such as Chronic Obstructive Pulmonary Disease (COPD). COPD is one of the most common lung conditions in the world with the primary cause being smoking in developed countries. COPD involves chronic inflammation of lung tissue resulting in increased susceptibility to infection. There is a lack of research regarding the pathophysiology that leads COPD patients to be susceptible to MAC infection. Our review paper therefore aims to investigate how the pathogenicity of MAC bacteria and immune decline seen in COPD patients leads to a greater susceptibility to MAC infection among COPD patients.


2015 ◽  
Vol 3 (2) ◽  
pp. 67-70
Author(s):  
Rawshan Arra Khanam ◽  
Md Ashraful Haque ◽  
Mohammad Omar Faruq

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable, but progressive disease. Hospital admissions of patients with COPD are frequently due to acute exacerbations of COPD (AECOPD). AECOPD are very common, affecting about 20% of COPD patients. The bacterial infection plays an important role in the exacerbation of COPD patients. In addition, recent studies using molecular diagnostics indicate that a substantial proportion of AECOPD are associated with viral infection. Accurate methods to differentiate viral and bacterial respiratory infections to allow targeted antibiotic therapy would be beneficial. Acute phase reactants are capable of demonstrating the inflammation; however, they cannot be employed to make a difference between bacterial and nonbacterial causes of the inflammation. Recently, measurement of procalcitonin (PCT) levels appears to be useful in order to minimize this problem.Bangladesh Crit Care J September 2015; 3 (2): 67-70


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura V. Reid ◽  
C. Mirella Spalluto ◽  
Alastair Watson ◽  
Karl J. Staples ◽  
Tom M. A. Wilkinson

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Individuals with COPD typically experience a progressive, debilitating decline in lung function as well as systemic manifestations of the disease. Multimorbidity, is common in COPD patients and increases the risk of hospitalisation and mortality. Central to the genesis of multimorbidity in COPD patients is a self-perpetuating, abnormal immune and inflammatory response driven by factors including ageing, pollutant inhalation (including smoking) and infection. As many patients with COPD have multiple concurrent chronic conditions, which require an integrative management approach, there is a need to greater understand the shared disease mechanisms contributing to multimorbidity. The intercellular transfer of extracellular vesicles (EVs) has recently been proposed as an important method of local and distal cell-to-cell communication mediating both homeostatic and pathological conditions. EVs have been identified in many biological fluids and provide a stable capsule for the transfer of cargo including proteins, lipids and nucleic acids. Of these cargo, microRNAs (miRNAs), which are short 17-24 nucleotide non-coding RNA molecules, have been amongst the most extensively studied. There is evidence to support that miRNA are selectively packaged into EVs and can regulate recipient cell gene expression including major pathways involved in inflammation, apoptosis and fibrosis. Furthermore changes in EV cargo including miRNA have been reported in many chronic diseases and in response to risk factors including respiratory infections, noxious stimuli and ageing. In this review, we discuss the potential of EVs and EV-associated miRNA to modulate shared pathological processes in chronic diseases. Further delineating these may lead to the identification of novel biomarkers and therapeutic targets for patients with COPD and multimorbidities.


2020 ◽  
Vol 8 (2) ◽  
pp. 82-83
Author(s):  
Susanne M. Lang

Background: Chronic obstructive pulmonary disease (COPD) affects up to 65 million people worldwide, and COPD exacerbation causes tissue damage and subsequent loss of lung function. It is a multifactorial event in which respiratory infections are involved, but little is known about its dynamics. Objectives: The objective of our study was to determine the microbiome composition during an exacerbation event and post-stabilization. Methods: We conducted an observational analytical study of a cohort of 55 COPD patients in which 2 sputum samples (the first taken during an exacerbation event and the second during clinical post-stabilization) were submitted to 16s RNA ribosomal analysis by Illumina Miseq Next Generation Sequencing (NGS). The presence of respiratory viruses was also determined. Results: Our study found a stable microbiome composition in the post-stabilization sputum samples of COPD patients, and 4 additional microbiomes in samples taken during the exacerbation, 3 of which showed a marked dysbiosis by Haemophilus, Pseudomonas, and Serratia. The fourth exacerbation microbiome had a very similar composition to post-stabilization samples, but some pathogens such as Moraxella and respiratory viruses were also found. Conclusions: Our study reveals the main protagonists involved in lung microbiome dynamics during an exacerbation event and post-stabilization in COPD patients by NGS analysis.


2020 ◽  
Vol 29 (2) ◽  
pp. 864-872
Author(s):  
Fernanda Borowsky da Rosa ◽  
Adriane Schmidt Pasqualoto ◽  
Catriona M. Steele ◽  
Renata Mancopes

Introduction The oral cavity and pharynx have a rich sensory system composed of specialized receptors. The integrity of oropharyngeal sensation is thought to be fundamental for safe and efficient swallowing. Chronic obstructive pulmonary disease (COPD) patients are at risk for oropharyngeal sensory impairment due to frequent use of inhaled medications and comorbidities including gastroesophageal reflux disease. Objective This study aimed to describe and compare oral and oropharyngeal sensory function measured using noninstrumental clinical methods in adults with COPD and healthy controls. Method Participants included 27 adults (18 men, nine women) with a diagnosis of COPD and a mean age of 66.56 years ( SD = 8.68). The control group comprised 11 healthy adults (five men, six women) with a mean age of 60.09 years ( SD = 11.57). Spirometry measures confirmed reduced functional expiratory volumes (% predicted) in the COPD patients compared to the control participants. All participants completed a case history interview and underwent clinical evaluation of oral and oropharyngeal sensation by a speech-language pathologist. The sensory evaluation explored the detection of tactile and temperature stimuli delivered by cotton swab to six locations in the oral cavity and two in the oropharynx as well as identification of the taste of stimuli administered in 5-ml boluses to the mouth. Analyses explored the frequencies of accurate responses regarding stimulus location, temperature and taste between groups, and between age groups (“≤ 65 years” and “> 65 years”) within the COPD cohort. Results We found significantly higher frequencies of reported use of inhaled medications ( p < .001) and xerostomia ( p = .003) in the COPD cohort. Oral cavity thermal sensation ( p = .009) was reduced in the COPD participants, and a significant age-related decline in gustatory sensation was found in the COPD group ( p = .018). Conclusion This study found that most of the measures of oral and oropharyngeal sensation remained intact in the COPD group. Oral thermal sensation was impaired in individuals with COPD, and reduced gustatory sensation was observed in the older COPD participants. Possible links between these results and the use of inhaled medication by individuals with COPD are discussed.


Author(s):  
Melvin K Mathews ◽  
Abubaker Siddiq ◽  
Bharathi D R

Background: Chronic obstructive pulmonary disease (COPD) is preventable and treatable disease state characterized by air flow limitation that is not fully reversible. Severity of the symptoms is increased during exacerbations. Objectives: The purpose of the study is to assess and improve the knowledge regarding COPD among study subjects. Materials and Methods: A Cross-sectional interventional study was carried out among the peoples in selected areas of the Chitradurga city for a period of six months. Result: A total 207 subjects enrolled in the study in that 155 male and 52 females. In our study mean score of post test was more (5.87±1.68) when compare to pre-test (2.63±1.46) which show significant increase in their knowledge after educating them (p=0.000). A total of 207 subjects were enrolled into the study. SPSS Software was used to calculate the statistical estimation. Paired t-test was used to detect the association status of different variables. Conclusion: The relatively good level of COPD awareness needs to be maintained to facilitate future prevention and control of the disease. This study had identified that negative illness perceptions should be targeted, so that they will not avoid patients from seeking for COPD treatment and adhere to it. Key words: Cross sectional study, Knowledge, practice, COPD.


Sign in / Sign up

Export Citation Format

Share Document