Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus.

Genetics ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 451-460 ◽  
Author(s):  
A Plessis ◽  
A Perrin ◽  
J E Haber ◽  
B Dujon

Abstract The Saccharomyces cerevisiae mitochondrial endonuclease I-SceI creates a double-strand break as the initiating step in the gene conversional transfer of the omega+ intron to omega- DNA. We have expressed a galactose-inducible synthetic I-SceI gene in the nucleus of yeast that also carries the I-SceI recognition site on a plasmid substrate. We find that the galactose-induced I-SceI protein can be active in the nucleus and efficiently catalyze recombination. With a target plasmid containing direct repeats of the Escherichia coli lacZ gene, one copy of which is interrupted by a 24-bp cutting site, galactose induction produces both deletions and gene conversions. Both the kinetics and the proportion of deletions and gene conversions are very similar to analogous events initiated by a galactose-inducible HO endonuclease gene. We also find that, in a rad52 mutant strain, the repair of double-strand breaks initiated by I-SceI and by HO are similarly affected: the formation of deletions is reduced, but not eliminated. Altogether, these results suggest either that the two endonucleases act in the same way after double-strand break formation or that the two endonucleases are not involved in subsequent steps.

2020 ◽  
Vol 48 (15) ◽  
pp. 8490-8508 ◽  
Author(s):  
Sarah S Henrikus ◽  
Camille Henry ◽  
Amy E McGrath ◽  
Slobodan Jergic ◽  
John P McDonald ◽  
...  

Abstract Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3989-3989
Author(s):  
Claire Seedhouse ◽  
Abigail Whittall ◽  
Karuna Tandon ◽  
Nigel H. Russell ◽  
Monica Pallis

Abstract Abstract 3989 Objective: Approximately 50% of patients with acute myeloid leukaemia respond to remission-induction chemotherapy, but later relapse. Relapse is thought to be due to the continued presence of a quiescent, chemoresistant leukaemic cell subpopulation. Understanding the damage response in these cells might help to guide targeted therapies. We therefore developed an in vitro model of the quiescent subpopulation and used it to study drug-induced damage and repair in quiescent multidrug resistant cells. Methods: We cultured CD34+ CD38- multidrug resistant KG1a AML cells under several conditions reported to induce cell cycle arrest. We used Pyronin Y to measure RNA content and 7-aminoactinomycin D to measure cell viability. Chemosensitivity, reactive oxygen species (ROS), mitochondrial pore transition and oxidative damage were measured flow cytometrically. gammaH2A.X foci were quantified to measure the double strand break response and DNA damage response and repair gene expression was studied using PCR microarrays and confirmed by real time PCR. Results: mTOR inhibitors induced an increase in G0 without induction of apoptosis. 48 hours' exposure to rapamycin increased the proportion of G0 cells from 13.3% (SD 2.3%) to 46.1% (SD 6%) and decreased mean cell volume. Delayed re-entry into cell cycle following rapamycin withdrawal confirmed the G0 status of these cells. Differentiation markers remained negative. Although several of the other conditions studied resulted in reduced cell growth, they also induced apoptosis, as did combinations of rapamycin with other growth inhibitors. The toxicity of the chemotherapy drug daunorubicin, which acts in part by inducing ROS, was reduced in the quiescence-enriched cells. Sensitivity to mitochondrial pore transition was similar in proliferating and quiescence-enriched cells, indicating that apoptotic pathways are not impaired. However, both basal and drug-induced ROS were significantly lower in quiescence-enriched than in the proliferating cells (p=0.006 for basal ROS and 0.013 for daunorubicin-induced ROS). Furthermore, several DNA repair genes were differentially regulated following daunorubicin treatment of the quiescence-enriched compared to the proliferating cells – these included genes responsible for the repair of double strand breaks. On treatment with daunorubicin, double strand breaks, but not oxidative damage to DNA were observed in both cell populations. However, strikingly, although quiescence-enriched cells sustained fewer DNA damage foci than proliferating cells, they were unable to resolve the damage after daunorubicin was removed. Conclusion: By using rapamycin to enrich KG1a cells for quiescence, we have shown low basal and drug-induced ROS to be associated with chemoresistance in these cells. However, we also found that quiescence gave rise to an impaired double strand break response, which might force these cells to rely on alternative repair pathways and thus be sensitive to synthetic lethal targeting. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 198 (3) ◽  
pp. 591-599 ◽  
Author(s):  
Fares Osam Yáñez-Cuna ◽  
Mildred Castellanos ◽  
David Romero

ABSTRACTGene conversion, the nonreciprocal transfer of information during homologous recombination, is the main process that maintains identity between members of multigene families. Gene conversion in the nitrogenase (nifH) multigene family ofRhizobium etliwas analyzed by using a two-plasmid system, where each plasmid carried a copy ofnifH. One of thenifHcopies was modified, creating restriction fragment length polymorphisms (RFLPs) spaced along the gene. Once the modified plasmid was introduced intoR. etli, selection was done for cointegration with a resident plasmid lacking the RFLPs. Most of the cointegrate molecules harbor gene conversion events, biased toward a gain of RFLPs. This bias may be explained under the double-strand break repair model by proposing that thenifHgene lacking the RFLPs suffers a DNA double-strand break, so the incoming plasmid functions as a template for repairing the homolog on the resident plasmid. To support this proposal, we cloned an SceI site into thenifHhomolog that had the RFLPs used for scoring gene conversion.In vivoexpression of the meganuclease I-SceI allowed the generation of a double-strand break on this homolog. Upon introduction of this modified plasmid into anR. etlistrain lacking I-SceI, biased gene conversion still favored the retention of markers on the incoming plasmid. In contrast, when the recipient strain ectopically expressed I-SceI, a dramatic reversal in gene conversion bias was seen, favoring the preservation of resident sequences. These results show that biased gene conversion is caused by preferential double-strand breaks on one of the recombining homologs.IMPORTANCEIn this work, we analyzed gene conversion by using a system that entails horizontal gene transfer followed by homologous recombination in the recipient cell. Most gene conversion events are biased toward the acquisition of the incoming sequences, ranging in size from 120 bp to 800 bp. This bias is due to preferential cutting of resident DNA and can be reversed upon introduction of a double-strand break on the incoming sequence. Since conditions used in this work are similar to those in horizontal gene transfer, it provides evidence that, upon transfer, the resident DNA preferentially acquires gene variants.


2019 ◽  
Author(s):  
Lior Onn ◽  
Miguel Portillo ◽  
Stefan Ilic ◽  
Gal Cleitman ◽  
Daniel Stein ◽  
...  

AbstractDNA double strand breaks are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure, with high affinity for double strand breaks. It relocates to sites of damage independently of signalling and known sensors and activates downstream signalling cascades for double strand break repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the Homologous Recombination and Non-Homologous End Joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as DNA damage sensor, which is critical for initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB binding capacity and DDR activation. SIRT6 activates the DDR, before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 at the top of the DDR and pave the road to dissect the contributions of distinct double strand break sensors in downstream signalling.


2017 ◽  
Author(s):  
Agnieszka Lukaszewicz ◽  
Julian Lange ◽  
Scott Keeney ◽  
Maria Jasin

ABSTRACTDNA double-strand breaks (DSBs) generated by the SPO11 protein initiate meiotic recombination, an essential process for successful chromosome segregation during gametogenesis. The activity of SPO11 is controlled by multiple factors and regulatory mechanisms, such that the number of DSBs is limited and DSBs form at distinct positions in the genome and at the right time. Loss of this control can affect genome integrity or cause meiotic arrest by mechanisms that are not fully understood. Here we focus on the DSB-responsive kinase ATM and its functions in regulating meiotic DSB numbers and distribution. We review the recently discovered roles of ATM in this context, discuss their evolutionary conservation, and examine future research perspectives.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Cathleen M Lake ◽  
Rachel J Nielsen ◽  
Fengli Guo ◽  
Jay R Unruh ◽  
Brian D Slaughter ◽  
...  

Meiotic recombination begins with the induction of programmed double-strand breaks (DSBs). In most organisms only a fraction of DSBs become crossovers. Here we report a novel meiotic gene, vilya, which encodes a protein with homology to Zip3-like proteins shown to determine DSB fate in other organisms. Vilya is required for meiotic DSB formation, perhaps as a consequence of its interaction with the DSB accessory protein Mei-P22, and localizes to those DSB sites that will mature into crossovers. In early pachytene Vilya localizes along the central region of the synaptonemal complex and to discrete foci. The accumulation of Vilya at foci is dependent on DSB formation. Immuno-electron microscopy demonstrates that Vilya is a component of recombination nodules, which mark the sites of crossover formation. Thus Vilya links the mechanism of DSB formation to either the selection of those DSBs that will become crossovers or to the actual process of crossing over.


2010 ◽  
Vol 192 (19) ◽  
pp. 4954-4962 ◽  
Author(s):  
Michael L. Rolfsmeier ◽  
Marian F. Laughery ◽  
Cynthia A. Haseltine

ABSTRACT DNA damage repair mechanisms have been most thoroughly explored in the eubacterial and eukaryotic branches of life. The methods by which members of the archaeal branch repair DNA are significantly less well understood but have been gaining increasing attention. In particular, the approaches employed by hyperthermophilic archaea have been a general source of interest, since these organisms thrive under conditions that likely lead to constant chromosomal damage. In this work we have characterized the responses of three Sulfolobus solfataricus strains to UV-C irradiation, which often results in double-strand break formation. We examined S. solfataricus strain P2 obtained from two different sources and S. solfataricus strain 98/2, a popular strain for site-directed mutation by homologous recombination. Cellular recovery, as determined by survival curves and the ability to return to growth after irradiation, was found to be strain specific and differed depending on the dose applied. Chromosomal damage was directly visualized using pulsed-field gel electrophoresis and demonstrated repair rate variations among the strains following UV-C irradiation-induced double-strand breaks. Several genes involved in double-strand break repair were found to be significantly upregulated after UV-C irradiation. Transcript abundance levels and temporal expression patterns for double-strand break repair genes were also distinct for each strain, indicating that these Sulfolobus solfataricus strains have differential responses to UV-C-induced DNA double-strand break damage.


2007 ◽  
Vol 85 (6) ◽  
pp. 663-674 ◽  
Author(s):  
Kendra L. Cann ◽  
Geoffrey G. Hicks

DNA double-strand breaks occur frequently in cycling cells, and are also induced by exogenous sources, including ionizing radiation. Cells have developed integrated double-strand break response pathways to cope with these lesions, including pathways that initiate DNA repair (either via homologous recombination or nonhomologous end joining), the cell-cycle checkpoints (G1–S, intra-S phase, and G2–M) that provide time for repair, and apoptosis. However, before any of these pathways can be activated, the damage must first be recognized. In this review, we will discuss how the response of mammalian cells to DNA double-strand breaks is regulated, beginning with the activation of ATM, the pinnacle kinase of the double-strand break signalling cascade.


1994 ◽  
Vol 14 (12) ◽  
pp. 8037-8050 ◽  
Author(s):  
J Halbrook ◽  
M F Hoekstra

To isolate Saccharomyces cerevisiae mutants defective in recombinational DNA repair, we constructed a strain that contains duplicated ura3 alleles that flank LEU2 and ADE5 genes at the ura3 locus on chromosome V. When a HO endonuclease cleavage site is located within one of the ura3 alleles, Ura+ recombination is increased over 100-fold in wild-type strains following HO induction from the GAL1, 10 promoter. This strain was used to screen for mutants that exhibited reduced levels of HO-induced intrachromosomal recombination without significantly affecting the spontaneous frequency of Ura+ recombination. One of the mutations isolated through this screen was found to affect the essential gene CDC1. This mutation, cdc1-100, completely eliminated HO-induced Ura+ recombination yet maintained both spontaneous preinduced recombination levels and cell viability, cdc1-100 mutants were moderately sensitive to killing by methyl methanesulfonate and gamma irradiation. The effect of the cdc1-100 mutation on recombinational double-strand break repair indicates that a recombinationally silent mechanism other than sister chromatid exchange was responsible for the efficient repair of DNA double-strand breaks.


Sign in / Sign up

Export Citation Format

Share Document