Cloning and Characterization of Maize B Chromosome Sequences Derived From Microdissection

Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 299-310 ◽  
Author(s):  
Ya-Ming Cheng ◽  
Bor-Yaw Lin

Abstract Isolation of sequences from the maize B chromosome is always hampered by its high homology with the normal complements. In this study, this handicap was overcome by cloning the sequences from the pachytene B chromosomes dissected out of a slide by a micromanipulator followed by degenerate oligonucleotide-primed PCR. The isolated sequences were found to hybridize with genomic DNA in a B-dosage-dependent manner and with the pachytene B chromosome by fluorescence in situ hybridization (FISH), corroborating their B origin. A total of 19 B sequences were isolated, all of which are repetitive and, with one exception, are homologous to the A chromosome(s). Three sequences have strong homology to maize sequences that include two knob repeats and one zein gene (noncoding region), and 10 others are homologous to the noncoding region of Adh1, Bz1, Gag, Zein, and B centromere to a lesser degree. Six sequences have no homology to any gene. In addition to FISH, the B-specific sequence and a partially B-specific one were also mapped, by seven newly characterized TB-10L translocations, to a similar location on the central portion of the distal heterochromatic region, spreading over a region of about one-third of the B chromosome.

2019 ◽  
Vol 20 (8) ◽  
pp. 1856 ◽  
Author(s):  
Shengming Sun ◽  
Ying Wu ◽  
Hongtuo Fu ◽  
Xianping Ge ◽  
Hongzheng You ◽  
...  

Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 589-597 ◽  
Author(s):  
M R Alfenito ◽  
J A Birchler

Abstract Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analysis of this repeat shows homology to motifs mapped to various plant and animal centromeres and to the maize neocentromere. A precise localization of these sequences among breakpoints within the B centromere and an homology to a facultative centromere, suggest a role for this sequence in centromere function.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 291-302 ◽  
Author(s):  
Brent T Page ◽  
Michael K Wanous ◽  
James A Birchler

Abstract Previous work has identified sequences specific to the B chromosome that are a major component of the B centromere. To address the issue of the origin of the B and the evolution of centromere-localized sequences, DNA prepared from plants without B chromosomes was probed to seek evidence for related sequences. Clones were isolated from maize line B73 without B chromosomes by screening DNA at reduced stringency with a B centromeric probe. These clones were localized to maize centromere 4 using fluorescence in situ hybridization. They showed homology to a maize centromere-mapped sequence, to maize B chromosome centromere sequences, and to a portion of the unit repeat of knobs, which act as neocentromeres in maize. A representative copy was used to screen a BAC library to obtain these sequences in a larger context. Each of the six positive BACs obtained was analyzed to determine the nature of centromere 4-specific sequences present. Fifteen subclones of one BAC were sequenced and the organization of this chromosome 4-specific repeat was examined.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1087-1097 ◽  
Author(s):  
F C Hsu ◽  
C J Wang ◽  
C M Chen ◽  
H Y Hu ◽  
C C Chen

Abstract Two families of tandem repeats, 180-bp and TR-1, have been found in the knobs of maize. In this study, we isolated 59 clones belonging to the TR-1 family from maize and teosinte. Southern hybridization and sequence analysis revealed that members of this family are composed of three basic sequences, A (67 bp); B (184 bp) or its variants B′ (184 bp), 2/3B (115 bp), 2/3B′ (115 bp); and C (108 bp), which are arranged in various combinations to produce repeat units that are multiples of ∼180 bp. The molecular structure of TR-1 elements suggests that: (1) the B component may evolve from the 180-bp knob repeat as a result of mutations during evolution; (2) B′ may originate from B through lateral amplification accompanied by base-pair changes; (3) C plus A may be a single sequence that is added to B and B′, probably via nonhomologous recombination; and (4) 69 bp at the 3′ end of B or B′, and the entire sequence of C can be removed from the elements by an unknown mechanism. Sequence comparisons showed partial homologies between TR-1 elements and two centromeric sequences (B repeats) of the supernumerary B chromosome. This result, together with the finding of other investigators that the B repeat is also fragmentarily homologous to the 180-bp repeat, suggests that the B repeat is derived from knob repeats in A chromosomes, which subsequently become structurally modified. Fluorescence in situ hybridization localized the B repeat to the B centromere and the 180-bp and TR-1 repeats to the proximal heterochromatin knob on the B chromosome.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Reproduction ◽  
2000 ◽  
pp. 325-335 ◽  
Author(s):  
A Calvo ◽  
LM Pastor ◽  
S Bonet ◽  
E Pinart ◽  
M Ventura

Lectin histochemistry was used to perform in situ characterization of the glycoconjugates present in boar testis and epididymis. Thirteen horseradish peroxidase- or digoxigenin-labelled lectins were used in samples obtained from healthy fertile boars. The acrosomes of the spermatids were stained intensely by lectins with affinity for galactose and N-acetyl-galactosamine residues, these being soybean, peanut and Ricinus communis agglutinins. Sertoli cells were stained selectively by Maackia ammurensis agglutinin. The lamina propria of seminiferous tubules showed the most intense staining with fucose-binding lectins. The Golgi area and the apical part of the principal cells of the epididymis were stained intensely with many lectins and their distribution was similar in the three zones of the epididymis. On the basis of lectin affinity, both testis and epididymis appear to have N- and O-linked glycoconjugates. Spermatozoa from different epididymal regions showed different expression of terminal galactose and N-acetyl-galactosamine. Sialic acid (specifically alpha2,3 neuraminic-5 acid) was probably incorporated into spermatozoa along the extratesticular ducts. These findings indicate that the development and maturation of boar spermatozoa are accompanied by changes in glycoconjugates. As some lectins stain cellular or extracellular compartments specifically, these lectins could be useful markers in histopathological evaluation of diseases of boar testis and epididymis.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


Sign in / Sign up

Export Citation Format

Share Document