scholarly journals Exercise Modality Affects Older Adult CT-Derived Muscle and Bone Loss During Caloric Restriction

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 79-80
Author(s):  
Ashley Weaver ◽  
Diana Madrid ◽  
Katelyn Greene ◽  
Michael Walkup ◽  
Walter Ambrosius ◽  
...  

Abstract Caloric restriction (CR) can exacerbate muscle and bone loss. We examined 18-month changes in computed tomography (CT)-derived trunk muscle, and volumetric bone mineral density (vBMD) and finite element-estimated bone strength of the spine and hip in 55 older adults randomized to CR alone or CR plus aerobic (CR+AT) or resistance (CR+RT) training. Trunk muscle area loss trended higher with CR+AT [-16.8 cm2 (95% CI: -26.4,-7.1) vs CR: -6.7 (-12.8,-0.5), CR+RT: -9.0 (-14.5,-3.4)]. Spine vBMD loss trended higher with CR+AT [−0.014 g/cm3 (−0.027,−0.001) vs. CR: −0.005 (−0.022,0.012), CR+RT: −0.004 (−0.019,0.011)], and similarly for vertebral bone strength. Hip vBMD losses trended lower with CR+RT [−0.015 g/cm3 (−0.024,−0.006) vs. CR: −0.027 (−0.036,−0.019), CR+AT: −0.029 (−0.037,−0.020)]. Hip vBMD and trunk muscle losses were positively correlated (r=0.53), and spine vBMD loss tended to increase with trunk muscle loss (r=0.21) and fat infiltration (r=0.17). Collectively, aerobic training was less effective at preserving muscle-bone health during CR.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1250
Author(s):  
Sarah J. Wherry ◽  
Ryan M. Miller ◽  
Sarah H. Jeong ◽  
Kristen M. Beavers

Despite the adverse metabolic and functional consequences of obesity, caloric restriction- (CR) induced weight loss is often contra-indicated in older adults with obesity due to the accompanying loss of areal bone mineral density (aBMD) and subsequent increased risk of fracture. Several studies show a positive effect of exercise on aBMD among weight-stable older adults; however, data on the ability of exercise to mitigate bone loss secondary to CR are surprisingly equivocal. The purpose of this review is to provide a focused update of the randomized controlled trial literature assessing the efficacy of exercise as a countermeasure to CR-induced bone loss among older adults. Secondarily, we present data demonstrating the occurrence of exercise-induced changes in bone biomarkers, offering insight into why exercise is not more effective than observed in mitigating CR-induced bone loss.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


Author(s):  
Abin Joy ◽  
Chaitra N ◽  
Ashok M ◽  
Handral M

ABSTRACTObjectives: This study was designed to investigate the antiosteoporotic activity of isolated anthraquinones from Morinda citrifolia fruit extract inovariectomy (OVX) induced osteoporotic rats.Methods: All the rats were divided into 4 groups (n=6 each). Group I (sham control) received vehicle, p.o., Group II OVX control (vehicle, p.o.),Group III was OVX+standard raloxifene (5.4 mg/kg, p.o.), and Group IV was OVX+Physcion (100 mg/kg, p.o.) for 90 days.Results: The daily oral administration of isolated compound physcion (100 mg/kg) for 12 weeks to the rats prevented OVX-induced osteoporosis.This was examined by serum biomarkers such as alkaline phosphatase, calcium, and tartrate resistant acid phosphatase and showed significanteffects (p<0.0001). The femur bone strength assessed by three-point bending test showed improved bone strength in physcion treated rats, andthis was supported by enhanced bone mineral density (p<0.05). The ash parameters of femur bone studied from physcion treated rats exhibited asignificant (p<0.0001) value of ash weight followed by ash calcium content. Further, femur bone histological examination revealed the protectiveeffect of the compound physcion (100 mg/kg) against OVX-induced bone loss in rats, where it showed mineralization of trabecular spaces, improvedbone compactness thereby intact bone architecture.Conclusion: This study concludes that the isolated anthraquinone physcion had a preventive effect against OVX-induced bone loss in rats.Keywords: Morinda citrifolia, Physcion, Osteoporosis, Bone mineral density, Ash mineral content.


2017 ◽  
Vol 103 (3) ◽  
pp. 1188-1197 ◽  
Author(s):  
Ondrej Soucek ◽  
Eckhard Schönau ◽  
Jan Lebl ◽  
Johannes Willnecker ◽  
Zdenek Hlavka ◽  
...  

Abstract Context Patients with Turner syndrome (TS) are at risk for osteoporotic fractures. Objective The aims of this study were to assess the incidence of clinically important fractures in girls with TS and prospectively describe the development of volumetric bone mineral density (BMD). Design Peripheral quantitative computerized tomography (pQCT) of the radius every other year over the 6 years of observation. Setting Government-funded university referral center. Participants Thirty-two girls with TS, aged 6 to 16 years, were included in the analyses. Fracture incidence was compared with the data in the general population. Bone density and strength were compared with data from 185 healthy girls. Outcomes The main clinical outcome was the fracture occurrence. The secondary outcomes were the changes in Z-scores of the bone parameters. Results Three girls with TS sustained four fractures during 6 years of observation. The fracture rate in TS was not substantially higher than the downward-biased fracture-rate estimate from age-matched, healthy controls (P = 0.48). Whereas the trabecular BMD Z-score decreased with age (β estimate −0.21 ± 0.04, P &lt; 0.001), total bone cross-sectional area correspondingly increased (+0.16 ± 0.04, P &lt; 0.001), which led to normal bone strength. A positive history of incident fractures was not significantly associated with any of the pQCT-derived bone parameters. Conclusions Current pediatric TS patients that are treated with growth hormone and estrogens are not at risk for osteoporotic fractures. Low BMD in TS may be counterweighted by enlarged bone radius, which leads to normal bone strength at the appendicular skeleton.


2010 ◽  
Vol 95 (6) ◽  
pp. 2755-2762 ◽  
Author(s):  
S. Tournis ◽  
E. Michopoulou ◽  
I. G. Fatouros ◽  
I. Paspati ◽  
M. Michalopoulou ◽  
...  

Abstract Context and Objective: Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. Design and Setting: We conducted a cross-sectional study at a tertiary center. Subjects: We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9–13 yr. Main Outcome Measures: We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. Results: The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P &lt; 0.005–0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P &lt; 0.01–0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. Conclusions: RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3445-3445
Author(s):  
Ersi Voskaridou ◽  
Dimitrios Christoulas ◽  
Athanasios Papatheodorou ◽  
Panagiotis Oikonomopoulos ◽  
Veroniki Komninaka ◽  
...  

Abstract Periostin is a matricellular protein, which seems to play an important role as an anabolic factor in bone tissue development and repair. By binding to cell surface receptors, it can modulate cell adhesion, proliferation, and differentiation, as well as cell-matrix interaction. Periostin is involved in collagen folding, a process which is crucial for matrix assembly and, therefore, for bone strength. However, its exact function on bone biology has not been fully clarified. Patients with hemoglobinopathies develop frequently bone loss, leading to osteopenia or osteoporosis. Several factors are implicated in the pathogenesis of bone destruction in these disorders. Our group has recently shown that activin-A is another factor which contributes to low bone mineral density (BMD) in thalassemia major (TM). Intriguingly, current studies have reported that periostin expression is up-regulated by several members of the TGF-β superfamily, including activin-A. Therefore, the aim of this study was to evaluate circulating periostin levels in a large number of patients with hemoglobinopathies and explore possible correlations with clinical and laboratory data, including BMD and circulating activin-A levels. We studied prospectively 162 patients with hemoglobinopathies: 47 patients had beta-thalassemia major (TM), 30 beta-thalassemia intermedia (TI), 75 double heterozygous sickle-cell/beta-thalassemia (HbS/beta-thal) and 10 had homozygous sickle cell disease (SCD). Circulating periostin was measured in the serum of the patients using an enzyme immunoassay (USCN Life Science Inc, Wuhan, Hubei, China), which has an intra-assay CV<10% and an inter-assay CV<12%. Circulating activin-A was measured using also an enzyme immunoassay (R&D Systems, Minneapolis, MN, USA). BMD of the lumbar spine (L1-L4), femoral neck (FN) and distal radius (R) was measured by dual energy X-ray absorptiometry (DXA) in all patients, at the time of blood sampling, using the Norland XR-26 Mark II densitometer (Norland Scientific Instruments, Fort Atkinson, WI, USA). The in vitro precision by repeated daily phantom measurements was 0.7 %, while the in vivo precision was 1.4 %, established in the laboratory used, by double measurements at weekly intervals. The above molecules were also measured in the serum of 17, age- and gender-matched, healthy individuals who served as controls. Patients with TM (mean±SD: 3227±1148 ng/ml), TI (2907±1255 ng/ml), HbS/beta-thal (3173±1244 ng/ml) and SCD (4300±1411 ng/ml) had elevated circulating periostin compared to controls (597±177 ng/ml, p<0.001 for all comparisons). Furthermore, SCD patients had higher periostin levels compared to patients with TI (p=0.005), HbS/beta-thal (p=0.026) and TM (p=0.029). In all patients, circulating periostin correlated weakly with activin-A (r=0.161, p=0.04), while in patients with HbS/beta-thal, high circulating periostin showed weak correlation with LDH (r=0.262, p=0.023). Regarding BMD, osteoporosis (according to the WHO definition based on DXA data) was present in 45% of patients with TM, in 40% of patients with TI, in 33% of SCD patients and in 25% of patients with HbS/beta-thal. Interestingly, high periostin levels strongly correlated with high BMD T-score of L1-L4 in HbS/beta-thal patients (r=0.740, p=0.006), but there were no other correlations between circulating periostin with BMD in the other subtypes of hemoglobinopathies. Our data, the first in the literature on circulating periostin levels in patients with hemoglobinopathies, show that periostin is elevated in the serum of patients with all studied subtypes of hemoglobinopathies, but it correlates with high BMD only in patients with HbS/beta-thal. One possible explanation is that periostin correlates with bone repair and possibly patients with HbS/beta-thal have higher repair activity and thus lower bone loss, increased bone strength and lower incidence of osteoporosis compared to other hemoglobinopathies patients. Furthermore, the presence of different periostin isoforms with unknown activity on bone remodeling may also explain these differences. Further studies are necessary to understand the regulation of periostin and its biological activities in the bone of patients with hemoglobinopathies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document