Relative benthic disturbances of conventional and novel otter boards

2015 ◽  
Vol 72 (8) ◽  
pp. 2450-2456 ◽  
Author(s):  
Matthew J. McHugh ◽  
Matt K. Broadhurst ◽  
David J. Sterling ◽  
Russell B. Millar ◽  
Greg Skilleter ◽  
...  

Abstract Reducing otter-board angle of attack (AOA) has been proposed as a way to limit the habitat impacts of demersal trawls, but there are few quantitative assessments. This study tested the hypothesis that a novel otter-board design, termed the “batwing” (comprising a 0.1-m wide sled with an offset sail at 20° AOA) would have relatively fewer bottom impacts than a conventional flat-rectangular otter board (35° AOA, with a similar hydrodynamic spreading force). Pairs of each otter board were suspended beneath a purpose-built rig comprising a beam and posterior semi-pelagic collection net and repeatedly deployed across established trawl grounds in an Australian estuary. Compared with the conventional otter boards, the batwings displaced significantly fewer empty shells (Anadara trapezia and Spisula trigonella) by 89% and school prawns (Metapenaeus macleayi) by up to 78%. These rates were similar to the difference in base-plate bottom contact (87%). Further, the batwing damaged proportionally fewer damaged shells, attributed to their displacement away from the board's surface area. Other debris (lighter pieces of wood) and benthic fish (bridled gobies, Arenigobius bifrenatus) were not as greatly mobilised (i.e. reduced by 50 and 25%, respectively); possibly due to their position on or slightly off the bottom, and a similar influence of hydrodynamic displacement by the hydro-vane surface areas. Although the consequences of reducing otter-board bottom contact largely remain unknown, low AOA designs like the batwing may represent a practical option for fisheries where trawling is perceived to be hazardous to sensitive habitats.

Clay Minerals ◽  
1990 ◽  
Vol 25 (1) ◽  
pp. 99-105 ◽  
Author(s):  
S. Inagaki ◽  
Y. Fukushima ◽  
H. Doi ◽  
O. Kamigaito

AbstractMicropore distribution and effective size of the channels of natural sepiolite from Turkey were measured by the BET method. Before the BET measurement, the samples were treated under a water vapour atmosphere at various pressures to fill progressively the sepiolite micropores with water. The surface areas measured by means of N2 adsorption decreased with increased vapour pressures of water. The outer surface area was estimated by comparison of the surface area of the vacuum-dried sepiolite with that filled with adsorbed water. The total surface area was ∼290 m2/g, and the outer surface area was 170 m2/g, the difference being attributed to the structural micropores of the sepiolite. The ratio of the surface areas possessed by the channels and that of the outer surface suggest that the mean thickness of the sepiolite fibre was ∼12 nm. The effective size of the channels was estimated from the number of various-sized molecules sorbed by the sepiolite, the results showing that molecules larger than benzene could not migrate into the channels.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1190
Author(s):  
Vu Khac Hoang Bui ◽  
Vinh Van Tran ◽  
Ju-Young Moon ◽  
Duckshin Park ◽  
Young-Chul Lee

Titanium dioxide nanoparticles (TiO2 NPs) have some limitations, such as their low surface area, high bandgap energy, and low recycling ability. To overcome these limitations, TiO2 can be prepared in microscale/macroscale structures. TiO2 microscale structures, in comparison with TiO2 nanopowder, have higher surface areas, more tunable pore structures, and better top photocatalytic activity. In contrast, for TiO2 macroscale structures, although the surface area is lower than TiO2 nanopowder in many cases, they still achieve similar or better photocatalytic performance due to their unique properties. Moreover, both TiO2 microscale and macroscale structures can be easily recovered from reaction media. The difference between these two types of TiO2 structures is a function not only of size but also of the preparation process. Every type of TiO2 structure has its own advantages and disadvantages, as will be discussed further in the following pages. Future perspectives on this research field also will be discussed.


Author(s):  
M. Marko ◽  
A. Leith ◽  
D. Parsons

The use of serial sections and computer-based 3-D reconstruction techniques affords an opportunity not only to visualize the shape and distribution of the structures being studied, but also to determine their volumes and surface areas. Up until now, this has been done using serial ultrathin sections.The serial-section approach differs from the stereo logical methods of Weibel in that it is based on the Information from a set of single, complete cells (or organelles) rather than on a random 2-dimensional sampling of a population of cells. Because of this, it can more easily provide absolute values of volume and surface area, especially for highly-complex structures. It also allows study of individual variation among the cells, and study of structures which occur only infrequently.We have developed a system for 3-D reconstruction of objects from stereo-pair electron micrographs of thick specimens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeongpil Kim ◽  
Jeong-Hyun Eum ◽  
Junhyeok Kang ◽  
Ohchan Kwon ◽  
Hansung Kim ◽  
...  

AbstractHerein, we introduce a simple method to prepare hierarchical graphene with a tunable pore structure by activating graphene oxide (GO) with a two-step thermal annealing process. First, GO was treated at 600 °C by rapid thermal annealing in air, followed by subsequent thermal annealing in N2. The prepared graphene powder comprised abundant slit nanopores and micropores, showing a large specific surface area of 653.2 m2/g with a microporous surface area of 367.2 m2/g under optimized conditions. The pore structure was easily tunable by controlling the oxidation degree of GO and by the second annealing process. When the graphene powder was used as the supercapacitor electrode, a specific capacitance of 372.1 F/g was achieved at 0.5 A/g in 1 M H2SO4 electrolyte, which is a significantly enhanced value compared to that obtained using activated carbon and commercial reduced GO. The performance of the supercapacitor was highly stable, showing 103.8% retention of specific capacitance after 10,000 cycles at 10 A/g. The influence of pore structure on the supercapacitor performance was systematically investigated by varying the ratio of micro- and external surface areas of graphene.


2021 ◽  
Author(s):  
Atal Ahmadzai

Alerted by increasing water insecurity and energy demand, countries, mainly in the Global South, are building dams of unprecedented magnitude. Hundreds of large dams (≥ 100 metres) have been constructed since 2000, with hundreds more under construction. Analyses of the physical attributes of these dams present a concerning image. While they create expansive reservoirs with large surface areas, they have inefficient surface area-to-volume ratios ('S2VR'). Their unprecedented size and the reservoirs’ expansive surface area, indicate severe environmental costs, mainly through ecological disturbances to the (riverine) aquatic ecosystems; and greenhouse gas emissions (GHG). Other ecological costs due to the larger S2VR include a high evaporation rate and compromised biodiversity of a wider area, both up- and downstream. The safety and environmental aspects of these large dams should be robustly scrutinised.


2018 ◽  
Vol 8 (9) ◽  
pp. 1596 ◽  
Author(s):  
Jung Park ◽  
Gi Lee ◽  
Sang Hwang ◽  
Ji Kim ◽  
Bum Hong ◽  
...  

In this study, a feasible experiment on adsorbed natural gas (ANG) was performed using activated carbons (ACs) with high surface areas. Upgraded ACs were prepared using chemical activation with potassium hydroxide, and were then applied as adsorbents for methane (CH4) storage. This study had three principal objectives: (i) upgrade ACs with high surface areas; (ii) evaluate the factors regulating CH4 adsorption capacity; and (iii) assess discharge conditions for the delivery of CH4. The results showed that upgraded ACs with surface areas of 3052 m2/g had the highest CH4 storage capacity (0.32 g-CH4/g-ACs at 3.5 MPa), which was over two times higher than the surface area and storage capacity of low-grade ACs (surface area = 1152 m2/g, 0.10 g-CH4/g-ACs). Among the factors such as surface area, packing density, and heat of adsorption in the ANG system, the heat of adsorption played an important role in controlling CH4 adsorption. The released heat also affected the CH4 storage and enhanced available applications. During the discharge of gas from the ANG system, the residual amount of CH4 increased as the temperature decreased. The amount of delivered gas was confirmed using different evacuation flow rates at 0.4 MPa, and the highest efficiency of delivery was 98% at 0.1 L/min. The results of this research strongly suggested that the heat of adsorption should be controlled by both recharging and discharging processes to prevent rapid temperature change in the adsorbent bed.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0001
Author(s):  
Ali Hosseini ◽  
Pim Van Dijk ◽  
Sofie Breuking ◽  
Bryan Vopat ◽  
Daniel Guss ◽  
...  

Category: Midfoot/Forefoot Introduction/Purpose: Proximal fifth metatarsal fractures (PFMF) are among the most common fractures in the foot and can be categorized into three fracture zones [1]. To investigate the fracture mechanism of PFMF in different zones, a better understanding of the anatomy of the bone and its surrounding soft tissues is required. Both the plantar fascia (PF) and the peroneus brevis (PB) tendon insertions are at the base of the fifth metatarsal, and may contribute to the pathophysiology of PFMF. However, the role of the PB and PF insertions in the pathogenesis of PFMF remains unclear. The purpose of this study was to accurately define the footprint of the PB and PF insertions of the base of the 5th metatarsal in relation to the different zones of PFMF. Methods: 21 cadaveric fifth metatarsal bones were harvested from cadaveric feet. All bones were freed of any remaining soft tissue adherence, except for the PB and the PF insertions. Three reference screws with a diameter of 1 mm were placed and secured on each bone with 2 screws distally and 1 screw proximally for registration. All bones were CT scanned to create a 3D bone reconstruction. Next, the insertions of the PB and PF and the reference screws of each bone were digitized and then mapped to its corresponding 3D bone model. In order to describe the three different fracture zones of the 5th metatarsal, an established coordinate system was made for each bone to simulate separate fracture zones (Figure a) based on Lawrence guideline [1]. The shape, location and surface areas of both insertions and their relation to the different fractures zones were determined (Figure b). Results: The insertion of the PB was oval shaped and located on the dorsal side of the base, with a mean surface area of 88.1 ± 46.4 mm2. The PF was oval shaped and situated around the tip of tuberosity, with a mean surface area of 150.7±53.5 mm2. The PB insertion was present in zone 1 fractures in 100% (21/21) of the 5th metatarsal models and 29% (6/21) of the models for zone 2 fractures. The PF insertion was involved in 100% (21/21) of the 5th metatarsal models for zone 1 fractures and 43% (9/21) of the models for zone 2 fractures. Conclusion: Results of this study demonstrate that the insertion of both the PB and PF are involved in all zone 1 PFMF and a significant percentage of zone 2 PFMF. The location of tendon insertions affect the forces exerted on the bone, which may indicate a relation of the insertions of both the PB and the PF with the fracture mechanism of many zone 1 and 2 PFMF. Moreover, in the treatment of these fractures, care should be taken to maintain or restore the anatomy of these insertions to maximize functional outcomes.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1064
Author(s):  
Masanori Kohno

Considering the relevance of clay mineral-bearing geomaterials in landslide/mass movement hazard assessment, various engineering projects for resource development, and stability evaluation of underground space utilization, it is important to understand the permeability of these clay mineral-based geomaterials. However, only a few quantitative data have been reported to date regarding the effects of the clay mineral type and hydraulic gradient on the permeability of clay mineral materials. This study was conducted to investigate the permeability of clay mineral materials based on the clay mineral type, under different hydraulic gradient conditions, through a constant-pressure permeability test. Comparative tests have revealed that the difference in the types of clay mineral influences the swelling pressure and hydraulic conductivity. In addition, it has been found that the difference in water pressure (hydraulic gradient) affects the hydraulic conductivity of clay mineral materials. The hydraulic conductivity has been found to be closely associated with the specific surface area of the clay mineral material. Furthermore, the hydraulic conductivity value measured is almost consistent with the value calculated theoretically using the Kozeny–Carman equation. Moreover, the hydraulic conductivity is also found to be closely associated with the hydrogen energy, calculated from the consistency index of clay. This result suggests that the hydraulic conductivity of clay mineral materials can be estimated based on the specific surface area and void ratio, or consistency index of clay.


1968 ◽  
Vol 11 (4) ◽  
pp. 805-810 ◽  
Author(s):  
E. R. Nilo

Twelve young adult men with normal hearing and no history of ear disease took part in our study of the relation of vibrator surface area and static application force to the vibrator-to-head coupling. For vibrator surface areas of 1.125, 2.25, and 4.5 cm 2 coupled to the forehead under static forces of 150, 300, and 600 gm, monaural thresholds of bone-conduction hearing were determined at frequencies 250, 500, 1000, and 2000 Hz. With surface area constant, threshold improvement was frequency dependent. It decreased with increasing frequency until at 2000 Hz it was minimal. In contrast to this, with force constant, the influence of surface area was observed to begin at 2000 Hz. Preliminary study suggests this influence would extend to 4000 Hz. In view of the respective influence of application force and surface area to bone-conduction hearing, equating vibrator-to-head coupling on the basis of pressure (force per unit area), when there are two or more vibrators, may not represent an adequate control.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S107-S107
Author(s):  
Jan V Stevens ◽  
Nina Prieto ◽  
Elika Ridelman ◽  
Justin D Klein ◽  
Christina M Shanti

Abstract Introduction Current practice for major pediatric burns includes fluid resuscitation using formulas that estimate fluid requirements based on weight and/or body surface area (BSA) along with percent total burn surface area (TBSA). Adult studies have shown that these formulas can cause fluid overload in obese patients and increase risk of complications. These findings have not been validated in pediatric patients. This study aims to evaluate whether a weight-based resuscitation formula increases the risk of complications in obese children following burn injuries and compares fluid estimates to those that incorporate BSA. Methods A retrospective review was conducted on 110 children (≤ 18 years old) admitted to an ABA-verified urban pediatric burn center from October 2008 to May 2020. Patients had ≥15% TBSA, were resuscitated with the weight-based Parkland formula, and had fluids titrated to urine output every two hours (1 ml/kg/hr if ≤ 30kg; 0.5 ml/kg/hr if > 30kg). Demographics, burn type, and TBSA were collected on admission. BSA-based Galveston and BSA-incorporated Cincinnati formula resuscitation predictions were also calculated. Output and input volumes were collected at 8h and 24h post-injury. Complications were collected throughout the hospital stay. Patients were classified into CDC-defined weight groups based on percentile ranges. Statistical analysis was conducted using SPSS Statistics version 10.0. Results This study included 11 underweight, 60 normal weight, 18 overweight, and 21 obese children. Our patients had a mean age-based weight CDC percentile of 62.2%, and mean TBSA of 25.4%. Predicted resuscitation volumes increased as CDC percentile increased for all three formulas (p=0.033, 0.092, 0.038), however there were no significant differences between overweight and obese children. Total fluid administered was higher as CDC percentile increased (p=0.023). However, overweight children received more total fluid than obese children. The difference between total fluids given and Galveston predicted resuscitation volumes were significant across all groups (p=0.042); however, the difference using the Parkland and Cincinnati formulas were not statistically significant. There were more children in the normal weight group who developed complications compared to other groups, but these findings were not significant. Conclusions The Parkland formula tended to underpredict fluid needs in the underweight, normal weight, and overweight children, and it overpredicted fluid needs for the obese. Further research is needed to determine the value of weight-based vs BSA-based or incorporated formulas in terms of their risk of complications.


Sign in / Sign up

Export Citation Format

Share Document