Ultrasonic-Assisted Aqueous Two-Phase Extraction Combined with Macroporous Resin Enrichment of Lignans from Flaxseed Meal and Their Antioxidant Activities

Author(s):  
Zhizhou Zhang ◽  
Yongchao Zhang ◽  
Yichao Wu ◽  
Yongxiang Xu ◽  
Yuanyuan Jiang ◽  
...  

Abstract Background Secoisolariciresinol di glucoside (SDG) is a natural antioxidant generally extracted from flaxseed, which is one of the most important oil crops in China, the by-product of the flaxseed oil, i.e., flaxseed meal, still contains a lot of lignans. However, flaxseed meal is generally treated as waste, resulting in a huge waste of resources. Objective To establish an efficient and convenient method for extraction and purification of lignans from flaxseed meal. Methods First, we used response surface methodology (RSM) to optimize the extraction conditions of the ultrasonic-assisted aqueous two-phase system (UAATPS), and we obtained the purified extracts by macroporous resin purification (MRP). Second, the antioxidant ability of the extracts was studied in vitro. Results The best extraction conditions obtained were as follows: 9.0 wt% sodium hydroxide, 30.0 wt% isopropanol, extraction time 39 min, liquid-to-solid ratio of 52.0 mL/g, ultrasonic wave 560 W, and extraction temperature 40 °C. Under the optimal conditions, the purity of crude extracts (SDG-APTS-C) reached 21.5%. The desorption conditions of MRP were as follows: eluting 3 BV with ultrapure water, and then eluting with 25% ethanol at 2 BV/h to collect eluents. The purified extracts (SDG-ATPS-P) had a purity quotient of 73.9%, 52.4% higher than that of SDG-ATPS-C. Additionally, experiments conducted in this paper revealed that SDG-ATPS-C and SDG-ATPS-P could effectively remove DPPH, ABTS, and hydroxyl free radicals in vitro. Conclusions The method was validated for extracting SDG from flaxseed meal, thus achieving the reuse of flaxseed meal. Highlights This research provides some references for the application of UAATPS combined with MRP in natural products.

2019 ◽  
Vol 58 (1) ◽  
pp. 60-74
Author(s):  
Zhenyu Cheng ◽  
Haiyan Song ◽  
Yuewei Zhang ◽  
Dandan Han ◽  
Xue Yu ◽  
...  

Abstract A potential method called microwave-assisted aqueous two-phase extraction (MA-ATPE) was developed for concurrent extraction and purification of gentiopicroside from Gentiana scabra Bunge. Formation characteristics of aqueous two-phase system (ATPS) composed of ethanol and 25 kinds of salts were investigated; K2HPO4 (w/w, 21.71%) and ethanol (w/w, 40.72%) were determined to be the optimal compositions of ATPS. Response surface methodology based on Box–Behnken design was used to investigate the extraction conditions, the optimal parameters were summarized as follows: 80°C of extraction temperature, 31 s of extraction time, 11:1 (mL/g) of liquid-to-solid ratio, 100 meshes of particle size and 806 W of microwave power. Under these conditions, the extraction yield of gentiopicroside was 65.32 ± 0.24 mg/g with a recovery of 96.51%. Compared with other four methods, the purity of gentiopicroside in the crude extracts reached 17.16 ± 0.25%, which was significantly higher than that of smashing tissue extraction, microwave assisted-extraction, ultrasonic-assisted extraction and heat reflux extraction, respectively. In addition, the phase-forming salt can be recyclable. Therefore, MA-ATPE was an excellent and alternative technique to the conventional extraction approaches of gentiopicroside.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3956 ◽  
Author(s):  
Lu ◽  
Cui

Capsaicin, which mainly comes from pepper, exhibits anticancer, antioxidant, and anti-obesity properties. This work aims to construct a comprehensive technology for the extraction and purification of capsaicin from capsicum oleoresin. The tunable aqueous polymer phase impregnated HZ816 resins were selected in extraction step. In the extraction process, 3 g of impregnated HZ816 macroporous resin was employed per system. The results showed that a higher molecular weight of Polyethylene glycol (PEG) and 1-ethyl-3-methyl imidazolium acetate ([Emim] [OAc]) are more beneficial to the improvement of the yield of capsaicin. Screening experiment using fractional factorial designs indicated that the amount of sample loading, pH, and concentration of [Emim] [OAc] and PEG 6000 significantly affect the yield of capsaicin. Mathematical models of capsaicin yield in tunable aqueous polymer-phase impregnated resins were established and optimum condition was obtained using response surface methodology. The optimum impregnated phase was the polymer phase of an aqueous two-phase system which contained 18.5% (w/w) PEG6000, 15% (w/w) sodium citrate, and 10% (w/w) [Emim] [OAc] at pH 6.5. Under the optimal conditions, the yield of capsaicin reached 95.82% when the extraction system contains 0.25 g capsicum oleoresin. Ultimately, capsaicinoids extract was purified by reverse-phase resin (SKP-10-4300) chromatographic column. The capsaicin recovery and purity achieved 85% and 92%, respectively.


2015 ◽  
Vol 9 (1) ◽  
pp. 134-142 ◽  
Author(s):  
Xudong Jiang ◽  
YaoLing Liao ◽  
GuiXi Lu ◽  
Zhike Xiao

An ultrasound-assisted extraction technique was used to extract the total flavonoids from QingLi Cao. The optimal conditions were ethanol concentration 59.20%, liquid-to-solid ratio 31.15 mL/g, extraction time 57.42 min and extraction temperature 58.57°C, which were determined using response surface methodology. The antioxidant activities including reducing power, ABTS+, DPPH, superoxide anion and hydroxyl radical were evaluated, which suggested significant antioxidant activities.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Li-mei Lin ◽  
Su-hui Xiong ◽  
Ling-jia Zhao ◽  
Jie Tang ◽  
Zhi-min Zhang ◽  
...  

In this study, optimization of enzyme-assisted extraction, purification, characterization, and its bioactivities of polysaccharides from Hedyotis corymbosa (HCP) was investigated. It was found that the optimum extraction conditions were 3% of enzyme concentration (X1), 30 of liquid-to-solid ratio (X2), 56°C of extraction temperature (X3), 200W of ultrasonic power (X4), 10 min of extraction time (X5), and 5 of pH value (X6). Under optimum conditions, the experimental yield (4.10 ± 0.16%) was closed to the predicted value (4.02%). The crude HCP was further purified using DEAE-52 and Sephadex G-150 gel column, and a major polysaccharide fraction from HCP, designed as HCP-1a with molecular weight of 33.9 kDa, was obtained. The HCP and HCP-1a were characterized by chemical analysis, FT-IR, and HPLC. For antioxidant activities in vitro, HCP possessed strong hydroxyl radical scavenging, DPPH radical scavenging, and Fe2+ chelating activities. In subsequent immunostimulatory studies, significantly decreased NO, IL-1β, and TNF-α concentrations were observed in both of HCP and HCP-1a treated RAW264.7 cells. Therefore, this study may indicate some insights into the application of polysaccharides from Hedyotis corymbosa as potential natural antioxidants and immunostimulants.


2017 ◽  
Vol 9 (3) ◽  
pp. 38 ◽  
Author(s):  
Xi Yuan ◽  
Ling Li ◽  
Hongyi Sun ◽  
Shuang Sun ◽  
Zhenya Zhang

Subcritical water extraction (SWE) of Inonotus Obliquus polysaccharides (IOP) was investigated using response surface methodology (RSM) with a design by Box–Behnken design (BBD). Results showed that the optimum SWE conditions for IOP production were as follows: extraction temperature 194°C, residence time 5.36 min and liquid-solid ratio 53 mL/g, yielding 168.80 ± 0.59 mg/g of IOP, which was in close agreement with the values predicted by the mathematical model. FT-IR spectra of the polysaccharides extracted by SWE and hot water extraction (HWE) were compared as well. Moreover, in vitro antioxidant assays revealed that SWE-IOP exhibited stronger scavenging activity that HWE-IOP. This investigation suggests that polysaccharides of Inonotus Obliquus extracted by SWE could be further developed as a potential antioxidant resource for dietary supplements of functional food.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 392
Author(s):  
Haiyan Chen ◽  
Han Xiao ◽  
Jiwei Pang

Owing to its pharmacological potential, betulin has attracted substantial attention in the past two decades. The present work attempts to extract betulin from Betula platyphylla Suk. bark by the ultrasonic-assisted ethanol method and to evaluate its potential bioactivities. The critical process variables affecting the yield were optimized by a four-factor, three-level, central composite response surface methodology (RSM). A betulin yield of 92.67% was achieved under the optimum conditions: 65% ethanol concentration, 1:25 ratio of white birch bark to solvent, an extraction temperature of 30 °C, and an extraction time of 30 min. The ratio of solid to solvent is the most significant parameter in terms of yield. The optimal conditions were validated through experiments, and the observed value (92.67 ± 2.3%) was interrelated with the predicted value (92.86 ± 1.5%). The betulin extract was analyzed quantitatively by HPLC and quantitatively by LC/MS, before its potential biological activities were evaluated. Bioactivity surveys confirmed that the betulin extract showed not only no embryo deformity through zebrafish administration experiments, but also no cytotoxicity through MTT assays. Furthermore, the betulin extract had strong antioxidant activities in vitro by scavenging ferric reducing power (FRAP), 1,1-diphenyl-2-picryl hydrazyl(DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and chelating metal ions. This study demonstrates that ultrasonic-assisted ethanol extraction may be a green, efficient method for the extraction of betulin from white birch bark, and that betulin extracts are potentially useful in cosmetics, food supplements, or pharmaceutical applications.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2213
Author(s):  
Pengcheng Li ◽  
Hongkun Xue ◽  
Mi Xiao ◽  
Jintian Tang ◽  
Hansong Yu ◽  
...  

Malus hupehensis (M. hupehensis), an edible and medicinal plant with significant antioxidant and hypoglycemic activity, has been applied to new resource foods. However, the structural characterization and biological effects of its polysaccharides (MHP) are less known. The optimum extraction parameters to achieve the highest extraction efficiency (47.63%), the yield (1.68%) and purity of MHP (89.6%) by ultrasonic-assisted aqueous two-phase system (ATPS) were obtained under the liquid-to-solid ratio of 23 g/mL, ultrasonic power of 65 W, and ultrasonic time of 33 min. According to the analysis results, MHP was composed of Man, GlcA, Rha, GalA, Glc, Gal, Xyl, Ara, and Fuc, in which Ara and Gal were the main components, and the content of GlcA was the lowest. In in vitro activity analysis, MHP showed a significant antioxidant capacity, and an inhibition activity of α-glucosidase and the advanced glycation end products (AGEs) formation in the BSA/Glc reaction model. MHP interacted with α-glucosidase and changed the internal microenvironment of the enzyme, and inhibited the AGEs formation, which provides more evidence for the antihyperglycemic mechanism of MHP. The results suggest that ATPS is an efficient and environmentally friendly solvent system, and M. hupehensis has broad application prospects in functional foods, healthcare products, and pharmaceuticals.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4536
Author(s):  
Beatriz Martín-García ◽  
María del Carmen Razola-Díaz ◽  
Ana María Gómez-Caravaca ◽  
Guillermo Benítez ◽  
Vito Verardo

Hawthorn leaves are a rich source of phenolic compounds that possess beneficial activities for human health. Ultrasonic-assisted extraction (UAE) is an extraction technique frequently used for the isolation of phenolic compounds in plants. Thus, in this study, a Box–Behnken design was used to optimize UAE conditions such as the percentage of acetone, the extraction time and solvent-to-solid ratio (v/w) in order to obtain the maximum content of total compounds by Folin–Ciocalteu and the maximum in vitro antioxidant activity by DPPH, ABTS and FRAP assays in Crataegus monogyna leaves. The optimum conditions to obtain the highest total phenolic content and antioxidant activities were 50% acetone, 55 min and 1/1000 (w/v). A total of 30 phenolic compounds were identified and quantified in C. monogyna leaf extract obtained at these optimum UAE conditions. HPLC-MS allows the identification and quantification of 19 phenolic compounds and NP-HPLC-FLD analyses showed the presence of 11 proanthocyanidins. According to the results, the most concentrated phenolic compounds in C. monogyna leaf extract obtained at optimum UAE conditions were phenolic acid derivatives such as protocatechuic acid-glucoside, dihydroxy benzoic acid pentoside and chlorogenic acid, flavones such as 2″-O-rhamnosyl-C-hexosyl-apigenin, flavonols such as hyperoside and isoquercetin and proanthocyanidins such as monomer and dimer. As a result, the optimized UAE conditions could be used to obtain an extract of C. monogyna leaves enriched with phenolic compounds.


2011 ◽  
Vol 396-398 ◽  
pp. 292-296
Author(s):  
Ai Shi Zhu

Ultrasonic technology was applied to polysaccharides extraction from Ottelia acuminata (Gagnep.) Dandy and Response Surface Methodology (RSM) was used to optimize the effects of processing parameters on polysaccharides yields. Three independent variables such as liquid-solid ratio (ml/g, X1), extraction temperature (°C, X2) and extraction time (hour, X3) were investigated respectively. The statistical analysis indicated that the three variables and the quadratic of X1 and X3 had significant effects on the yields and followed by the significant interaction effects between the variables of X1 and X3, X2 and X3 (p<0.05). A mathematical model with high determination coefficient was gained. The optimal extraction conditions of polysaccharides were determined as follows: liquid-solid ratio 43 ml/g, extraction temperature 90 °C and extraction time 3.45 hours. Under these conditions, the experimental yield of polysaccharides was 107.44 mg/g, which was agreed closely with the predicted value 108.71 mg/g.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Zhang ◽  
Yang Yang ◽  
Zhanyong Wang

Response surface technique was employed for improving the extraction of corn silk polysaccharides (CSP). Temperature, liquid-to-solid ratio, and per extraction time were all examined as separate factors. The optimal extraction parameters were determined by fitting experimental data to a second-order polynomial; a liquid-to-solid ratio of 21.5 ml/g, temperature equivalent to 88°C, and extraction time of 1.87 h. The experimental yield of the extracted polysaccharides following the application of these conditions was 4.33 ± 0.08% (dry weight), which fit quite well with the predicted value. CSP’s strong scavenging capabilities against hydroxyls, 1,1-diphenyl-2-picrylhydrazyl radicals, and superoxide anions along with its excellent reducing potential, were demonstrated in an in vitro antioxidant experiment. Meanwhile, in vivo testing revealed that CSP substantially enhanced glutathione peroxidase and superoxide dismutase activities. The Malondialdehyde levels in the liver and serum of aged mice also underwent a decrease. This study found that CSP has a substantial antioxidant potential in vitro and in vivo, suggesting that it might be used as an antioxidant in food and medicine.


Sign in / Sign up

Export Citation Format

Share Document