scholarly journals Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress

2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Adriana Morales ◽  
Tania Gómez ◽  
Yuri D Villalobos ◽  
Hugo Bernal ◽  
John K Htoo ◽  
...  

Abstract Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 69-69
Author(s):  
Adriana Morales ◽  
Fernanda González ◽  
Lucero Camacho ◽  
Salvador Espinoza ◽  
Caroline González-Vega ◽  
...  

Abstract The exposure of pigs to heat stress (HS) reduces feed intake and can damage their intestinal epithelia, affecting the amino acid (AA) absorption. Because Arg is involved in the restoration of intestinal epithelia cells and HS reduces Arg intake, the effect of dietary supplementation with Arg above requirement on the expression of specific AA transporters and the serum concentration (SC) of free AA in HS pigs was analyzed. Twenty pigs (25.3 ± 4.4 kg BW) were randomly assigned to one of two dietary treatments: control wheat-soybean meal diet supplemented with L-Lys and L-Thr (CON), and the CON diet added with 0.20% L-Arg (ARG). Pigs had at libitum access to feed and water. At the end of a 21-d trial, 6 pigs per treatment were sacrificed; blood and intestinal mucosa samples from each segment of the small intestine were collected to analyze the SC of AA and the expression of AA transporters, respectively. Ambient temperature (AT) ranged from 28.2 to 38.7 °C. Supplementation of L-Arg increased approx. 5x the abundance of mRNA coding for the synthesis of AA transporter b0,+ (P< 0.05) and tended to increase that of the AA transporter B0 (P< 0.10) in duodenum, but no effect on gene expression in jejunum and ileum was observed. The SC of AA (mg/dL) for CON and ARG pigs were: Arg, 27.40, 38.32; His, 9.64, 12.9; Ile, 14.33, 15.73; Leu, 23.32, 29.97; Lys, 31.67, 39.72; Met, 5.14, 8.22; Phe, 15.18, 18.07; Thr, 20.82, 31.55; Trp, 8.50, 11.32; Val, 22.47, 33.35, respectively. Supplementation of L-Arg increased serum Arg, His, Met, Thr, Trp, and urea (P< 0.05); tended to increase Val (P< 0.10), but did not affect Ile, Leu, Lys, and Phe (P >0.10). These results indicate that supplementation of L-Arg may help to recover the intestinal epithelia, improve the absorptive function of the small intestine, and increase the availability of some indispensable AA in HS pigs.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 281-282
Author(s):  
Cedrick N Shili ◽  
Mohammad Habibi ◽  
Julia Sutton ◽  
Jessie Barnes ◽  
Jacob Burchkonda ◽  
...  

Abstract Moderately low protein (MLP) diets can help decrease nutrient excretion from the swine production. However, MLP diets negatively impact growth performance. We hypothesized that supplementing MLP diets with phytogenics may reduce the negative effects of these diets on growth. The objective of this study was to investigate the effect of a phytogenic water additive (PWA; Herbanimal®) on growth performance, blood metabolite and gene expression of amino acids transporters in pigs fed with MLP diets. Forty-eight weaned barrows were allotted to six dietary treatments (n = 8) for 4 weeks: >CON-NS: standard protein diet-no PWA; CON-LS: standard protein diet-low PWA dose (4 ml/L); CON-HS: standard protein diet-high PWA dose (8 ml/L); LP-NS: low protein diet-no PWA; LP-LS: low protein diet-low PWA dose (4 ml/L); LP-HS: low protein diet- high PWA dose (8 ml/L). Feed intake and body weight were recorded daily and weekly, respectively. At week 4, blood and tissue samples were collected and analyzed for metabolites using a chemistry analyzer and amino acid transporters using qPCR, respectively. The data were analyzed by univariate GLM (SPSS®) and the means were separated using paired Student’s t-test corrected by Benjamini-Hochberg. Pigs fed CON-HS improved the average daily gain and serum calcium and phosphorus concentrations compared to CON-NS. Pigs fed LP-LS had higher serum phosphorus and blood urea nitrogen compared to the pigs fed with LP-NS. The mRNA abundance of SLC7A11 in the jejunum was lower in CON-LS and CON-HS compared to CON-NS. Additionally, mRNA abundance of SLC6A19 in the jejunum of pigs fed with LP-LS was higher compared to LP-NS and lower in CON-HS relative to pigs fed with CON-LS. In conclusion, PWA improved the growth performance of pigs fed standard protein diets but not low protein diets. Further, the PWA improved the concentrations of blood calcium and phosphorous in pigs fed MLP diets. Funding: Agrivida and Animal Health and Production and Animal Products: Improved Nutritional Performance, Growth, and Lactation of Animals from the USDA-NIFA.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 644 ◽  
Author(s):  
Humam ◽  
Loh ◽  
Foo ◽  
Samsudin ◽  
Mustapha ◽  
...  

The effects of feeding different postbiotics on growth performance, carcass yield, intestinal morphology, gut microbiota, immune status, and growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF-1) gene expression in broilers under heat stress were assessed in this study. A total of 252 one-day-old male broiler chicks (Cobb 500) were randomly assigned in cages in identical environmentally controlled chambers. During the starter period from 1 to 21 days, all the birds were fed the same basal diet. On day 22, the birds were weighed and randomly divided into six treatment groups and exposed to cyclic high temperature at 36 ± 1 °C for 3 h per day from 11:00 to 14:00 until the end of the experiment. From day 22 to 42 (finisher period), an equal number of birds were subjected to one of the following diets: NC (negative control) basal diet; PC (positive control) basal diet + 0.02% oxytetracycline; or AA (ascorbic acid) basal diet + 0.02% ascorbic acid. The other three groups (RI11, RS5 and UL4) were basal diet + 0.3% different postbiotics (produced from different Lactobacillus plantarum strains, and defined as RI11, RS5 and UL4, respectively). The results demonstrated that birds fed RI11 diets had significantly higher final body weight, total weight gain and average daily gain than the birds that received the NC, PC and AA treatments. The feed conversion ratio was significantly higher in the RI11 group compared with the other groups. Carcass parameters were not affected by the postbiotic-supplemented diet. Postbiotic supplementation improved villi height significantly in the duodenum, jejunum and ileum compared to the NC, PC and AA treatments. The crypt depth of the duodenum and ileum was significantly higher in NC group compared to other treatment groups except RI11 in duodenum, and UL4 in ileum was not different with NC groups. The villus height to crypt depth ratio of duodenum and ileum was significantly higher for the postbiotic treatment groups and AA than the PC and NC treatment groups. The postbiotic RI11 group recorded significantly higher caecum total bacteria and Lactobacillus count and lower Salmonella count compared to the NC and PC treatment groups. The Bifidobacterium population in the NC group was significantly lower compared to the other treatment groups. The postbiotic (RI11, RS5 and UL4) and AA treatment groups showed lower Enterobacteriaceae and E. coli counts and caecal pH than the NC and PC treatment groups. The plasma immunoglobulin M (IgM) level was significantly higher in the birds receiving postbiotic RI11 than those receiving other treatments. The plasma immunoglobulin G (IgG) level was higher in the RI11 treatment group than in the NC, AA and RS5 groups. The plasma immunoglobulin A (IgA) level was not affected by postbiotic supplements. The hepatic GHR mRNA expression level was significantly increased in birds fed postbiotics RI11, RS5 and UL4, AA and PC compared to the NC-fed birds. Postbiotic RI11 led to significantly higher hepatic IGF-1 mRNA expression level compared to the NC, PC, and AA treatments. Mortality was numerically lesser in the postbiotic treatment groups, but not significantly different among all the treatments. In conclusion, among the postbiotics applied in the current study as compared with NC, PC and AA, RI11 could be used as a potential alternative antibiotic growth promoter and anti-stress treatment in the poultry industry.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 22-23
Author(s):  
Candido Pomar

Abstract Feeding growing pigs with diets providing the required amount of essential and non-essential amino acids (AA) reduces energy expenditure and minimizes N excretion. Low protein diets can be obtained by supplementing feeds with crystalline AA. Numerous experiments have evaluated the ideal dietary AA concentration at different growth stages, but reducing dietary protein with the use of supplemental AA is limited by the inaccuracy of the principles used to estimate AA requirements. One of these principles states that growing animals need AA for maintenance and growth. Maintenance requirements are related to BW whereas the efficiency of AA utilization (e.g., 72% for Lys) and body protein AA composition are constant (e.g., 7% for Lys). These parameters are, however, affected by AA restriction, meal frequency, energy supply, genetics, etc. Even when controlling these factors, individual pigs respond differently to the same AA supply. Yet pigs are raised in groups and fed with a unique feed for long periods. Individual pigs within a given population differ in terms of BW, ADG, health status, etc., and consequently, differ in the amount of AA they need at a given time. Therefore, when feeding a group of pigs, the concept of maintenance and growth requirements may not be appropriate. In this situation, nutrient requirements should be seen as the optimal balance between the proportion of animals that needs to be overfed and underfed. Given that for most AA, underfed animals exhibit reduced performance, whereas overfed animals exhibit near-optimal performance, optimal growth is obtained when nutrients are provided to satisfy the requirements of the most demanding animals. There is therefore a trade-off between performance and dietary protein reduction. The inaccuracy of the principles used to estimate AA requirements, both for individual animals and populations, limits how far we can go reducing dietary protein with the use of supplemental AA.


1975 ◽  
Vol 228 (4) ◽  
pp. 1284-1287 ◽  
Author(s):  
PM Leung ◽  
BA Horwitz

Infusion of bacterial pyrogen (Priomen) was accompanied by an increase in body temperature, an increase in heat production, and a decrease in the voluntary food intake ofrats fed high-as well as low-protein diets. The magnitude of this pyrogen-induced depression of food intake was comparable for both diets. However, in rats fed high-protein diets, this decrease was additive to that normally seen following administration of such diets. These data indicate that the control of food intake cannot be explained in terms of a behavioral the more regulatory response.


1988 ◽  
Vol 255 (2) ◽  
pp. G143-G150 ◽  
Author(s):  
R. P. Ferraris ◽  
J. Diamond ◽  
W. W. Kwan

Uptake of the dipeptide L-carnosine was measured in everted intestinal sleeves of mice whose dietary protein level or else proportion of protein in the form of free amino acids was varied experimentally. Carnosine uptake was highest in the jejunum, regardless of ration. Compared with a low-protein (18%) ration, a high-protein (72%) ration stimulated carnosine uptake by 30-70% in duodenum and jejunum (but not in ileum). This stimulation was observed even in the presence of peptidase inhibitors that inhibit cell surface hydrolysis of dipeptides. Measured carnosine hydrolysis was low or negligible. Carnosine uptake was the same in mice fed 54% unhydrolyzed casein, 54% partly hydrolyzed casein, and 54% free amino acids formulated so as to stimulate a complete hydrolysate of casein. Thus carnosine uptake is regulated by dietary levels of amino acids, peptides, and proteins, all of which seem equally effective at inducing carnosine transporters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingdi Hu ◽  
Renjuan Qian ◽  
Yanjun Zhang ◽  
Xule Zhang ◽  
Xiaohua Ma ◽  
...  

Clematis is a superior perennial ornamental vine known for varied colors and shapes of its flowers. Clematis crassifolia is sensitive to high temperature, whereas Clematis cadmia has a certain temperature adaptability. Here we analyzed the potential regulatory mechanisms of C. crassifolia and C. cadmia in response to heat stress by studying the photosynthesis, antioxidant parameters, amino acids, and gene expression patterns under three temperature treatments. Heat stress caused the fading of leaves; decreased net photosynthetic rate, stomatal conductance, superoxide dismutase, and catalase activity; increased 13 kinds of amino acids content; and up-regulated the expression of seven genes, including C194329_G3, C194434_G1, and C188817_g1, etc., in C. crassifolia plants. Under the treatments of heat stress, the leaf tips of C. cadmia were wilted, and the net photosynthetic rate and soluble protein content decreased, with the increase of 12 amino acids content and the expression of c194329_g3, c194434_g1, and c195983_g1. Our results showed that C. crassifolia and C. cadmia had different physiological and molecular response mechanisms to heat stress during the ecological adaptation.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Meng Kang ◽  
Jie Yin ◽  
Jie Ma ◽  
Xin Wu ◽  
Ke Huang ◽  
...  

Previous study showed that low protein diet-fed pigs are characterized by lower histidine concentration in the serum and muscle, suggesting that histidine may involve in protein-restricted response. Thus, the current study mainly investigated the effects of dietary histidine on growth performance, blood biochemical parameters and amino acids, intestinal morphology, and microbiota communities in low protein diet-challenged-piglets. The results showed that protein restriction inhibited growth performance, blood biochemical parameters and amino acids, and gut microbiota but had little effect on intestinal morphology. Dietary supplementation with histidine markedly enhanced serum histidine level and restored tryptophan concentration in low protein diet-fed piglets, while growth performance and intestinal morphology were not markedly altered in histidine-treated piglets. In addition, histidine exposure failed to affect bacterial diversity (observed species, Shannon, Simpson, Chao1, ACE, and phylogenetic diversity), but histidine-treated piglets exhibited higher abundances of Butyrivibrio and Bacteroides compared with the control and protein-restricted piglets. In conclusion, dietary histidine in low protein diet enhanced histidine concentration and affected gut microbiota (Butyrivibrio and Bacteroides) but failed to improve growth performance and intestinal morphology.


Author(s):  
A Morales ◽  
F González ◽  
H Bernal ◽  
R L Camacho ◽  
N Arce ◽  
...  

Abstract The exposure of pigs to heat stress (HS) appears to damage their intestinal epithelia, affecting the absorption of amino acids (AA). Arg is involved in the restoration of intestinal epithelial cells but HS reduces Arg intake. The effect of dietary supplementation with Arg on morphology of intestinal epithelia, AA transporter gene expression, and serum concentration (SC) of free AA in HS pigs were analyzed. Twenty pigs (25.3 ± 2.4 kg BW) were randomly assigned to two dietary treatments: control (0.81% Arg), wheat-soybean meal diet supplemented with L-Lys, L-Thr, DL-Met and L-Trp, and the experimental diet where 0.16% free L-Arg was supplemented to a similar control diet (+Arg). All pigs were individually housed and exposed to HS, fed at libitum with full access to water. The ambient temperature, recorded at 15-min intervals during the 21-d trial, ranged on average from 29.6 to 39.4 °C within the same day. Blood samples were collected on d18 at 1600 h (ambient temperature peak); serum was separated by centrifugation. At the end of the trial, five pigs per treatment were sacrificed to collect samples of mucosa scratched from each small intestine segment. The expression of AA transporters in intestinal mucosa and the SC of AA were analyzed. Villi height was higher (P < 0.01) in duodenum, jejunum, and ileum but the crypt depth did not differ between the control and the +Arg pigs. Supplementation of L-Arg increased the mRNA coding for the synthesis of the cationic AA transporter b 0,+ (P < 0.01) and the neutral AA transporter B 0 (P < 0.05) in duodenum by approximately five-folds and three-folds, respectively, but no effect on mRNA abundance was observed in jejunum and ileum. The supplementation of L-Arg increased serum Arg, His, Met, Thr, Trp, and urea (P < 0.05); tended to increase Val (P < 0.10), but did not affect Ile, Lys, Leu, and Phe. These results indicate that supplementing 0.16% L-Arg to the control diet may help to improve the function of the small intestine epithelium, by increasing the villi height, the abundance of AA transporters, and the SC of most indispensable AA in pigs exposed to HS conditions. However, the lack of effect of supplemental Arg on both Lys SC and weight gain of pigs suggests that increasing the Lys content in the +Arg diet might be needed to improve the performance of HS pigs.


2018 ◽  
Vol 96 (4) ◽  
pp. 1419-1429 ◽  
Author(s):  
A Morales ◽  
M Chávez ◽  
N Vásquez ◽  
J K Htoo ◽  
L Buenabad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document