262 Reproductive Microbiomes as Predicators of Fertility in Beef Cattle

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 135-136
Author(s):  
Rebecca K Poole

Abstract Over the past decade, a multitude of research has sought to understand the complexity and role of the reproductive microbiome as it pertains to fertility. Previously, the reproductive microbiome was evaluated using culture-dependent methods; however, recent advancements in culture-independent, 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive tract microbiome. Early sequencing studies sought to compare the vaginal microbiome of cattle to the vaginal microbiome of healthy women, which predominantly consists of bacteria in the genus Lactobacillus and believed to be an indicator of fertility. In the vagina of beef cattle, however, there are incredibly low abundances of Lactobacillus and a greater diversity of bacterial species present. Beta-diversity, which examine differences in bacterial communities between samples, does not appear to differ in the vagina between unbred, open, or pregnant cattle. In postpartum beef cattle just prior to breeding, there are greater levels of diversity and increased bacterial species richness in the vagina compared to the uterus. Research on bacterial species within the uterus have primarily focused on pathogenic bacteria in postpartum cattle diagnosed with uterine disease. Fewer studies have investigated uterine bacterial species in presumed healthy postpartum beef cattle and the subsequent effects on fertility outcomes (e.g., pregnant vs. open at day 30). When evaluating the uterine microbiome during an industry standard estrus synchronization protocol, bacterial community abundance and diversity reduce over time regardless of resulting fertility outcomes. The greatest difference in uterine bacterial abundance between resulting pregnant and non-pregnant cattle appears to occur just prior to breeding. Numerous mechanisms could be contributing to the fluctuations in the uterine microbiome in beef cattle including circulating hormone concentrations or local immunoregulation. This presentation will focus on recent research investigating potential mechanisms that may alter the reproductive microbiome and ultimately impact fertility.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
K. Böhme ◽  
P. Cremonesi ◽  
M. Severgnini ◽  
Tomás G. Villa ◽  
I. C. Fernández-No ◽  
...  

Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB) hybridization on membranes, coupled to the high specific ligation detection reaction (LDR). First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA). Four probes were selected and synthesized, being specific forAeromonasspp.,Pseudomonasspp.,Shewanellaspp., andMorganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Jannie Munk Kristensen ◽  
Marta Nierychlo ◽  
Mads Albertsen ◽  
Per Halkjær Nielsen

ABSTRACT Pathogenic bacteria in wastewater are generally considered to be efficiently removed in biological wastewater treatment plants. This understanding is almost solely based on culture-based control measures, and here we show, by applying culture-independent methods, that the removal of species in the genus Arcobacter was less effective than for many other abundant genera in the influent wastewater. Arcobacter was one of the most abundant genera in influent wastewater at 14 municipal wastewater treatment plants and was also abundant in the “clean” effluent from all the plants, reaching up to 30% of all bacteria as analyzed by 16S rRNA gene amplicon sequencing. Metagenomic analyses, culturing, genome sequencing of Arcobacter isolates, and visualization by fluorescent in situ hybridization (FISH) confirmed the presence of the human-pathogenic Arcobacter cryaerophilus and A. butzleri in both influent and effluent. The main reason for the high relative abundance in the effluent was probably that Arcobacter cells, compared to those of other abundant genera in the influent, did not flocculate and attach well to the activated sludge flocs, leaving a relatively large fraction dispersed in the water phase. The study shows there is an urgent need for new standardized culture-independent measurements of pathogens in effluent wastewaters, e.g., amplicon sequencing, and an investigation of the problem on a global scale to quantify the risk for humans and livestock. IMPORTANCE The genus Arcobacter was unexpectedly abundant in the effluent from 14 Danish wastewater treatment plants treating municipal wastewater, and the species included the human-pathogenic A. cryaerophilus and A. butzleri. Recent studies have shown that Arcobacter is common in wastewater worldwide, so the study indicates that discharge of members of the genus Arcobacter may be a global problem, and further studies are needed to quantify the risk and potentially minimize the discharge. The study also shows that culture-based analyses are insufficient for proper effluent quality control, and new standardized culture-independent measurements of effluent quality encompassing most pathogens should be considered.


2020 ◽  
Vol 8 (9) ◽  
pp. 1277 ◽  
Author(s):  
Aiguo Zhou ◽  
Shaolin Xie ◽  
Di Sun ◽  
Pan Zhang ◽  
Han Dong ◽  
...  

The microbial community structure of water is an important indicator for evaluating the water quality of the aquaculture environment. In this study, the investigation and comparison of the bacterial communities of pond cultivation (PC) and greenhouse cultivation (GC) between hatchling, juvenile, and adult growth stages of C. reevesii were performed. In addition, the V4 regions of the 16S rRNA gene were sequenced. The Chao1 richness estimator of the PC group was significantly higher than that of the GC group. The beta diversity showed that the microbiotas of the two groups were isolated from each other. The dominant phyla were Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes in the PC group and Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Chloroflexi, and Actinobacteria in the GC group. Both the numbers and the types of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations differed between the PC and GC groups. The prediction of bacterial phenotype implied that the GC environment is more likely to deteriorate, and turtles are more susceptible to pathogens than those of the PC environment. In addition, a total of nine potential pathogenic bacteria were identified and the correlation of environmental factors analyses showed significant differences of bacterial species between the PC and GC groups, while the potential pathogenic bacteria showed significant correlation with the stocking density, temperature, pH, orthophosphate (PO4-P), and dissolved oxygen (DO) in both the PC and GC groups. Noticeably, this is the first report to describe the different microbiota characteristics of the different cultivation environments in the different growth stages of C. reevesii, which will provide valuable data for water quality adjustment, disease prevention, and the healthy breeding of turtles.


mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Florencia A. Tettamanti Boshier ◽  
Sujatha Srinivasan ◽  
Anthony Lopez ◽  
Noah G. Hoffman ◽  
Sean Proll ◽  
...  

ABSTRACT Whereas 16S rRNA gene amplicon sequencing quantifies relative abundances of bacterial taxa, variation in total bacterial load between samples restricts its ability to reflect absolute concentrations of individual bacterial species. Quantitative PCR (qPCR) can quantify individual species, but it is not practical to develop a suite of qPCR assays for every bacterium present in a diverse sample. We sought to determine the accuracy of an inferred measure of bacterial concentration using total bacterial load and relative abundance. We analyzed 1,320 samples from 20 women with a history of frequent bacterial vaginosis who self-collected vaginal swabs daily over 60 days. We inferred bacterial concentrations by taking the product of species relative abundance (assessed by 16S rRNA gene amplicon sequencing) and bacterial load (measured by broad-range 16S rRNA gene qPCR). Log10-converted inferred concentrations correlated with targeted qPCR (r = 0. 935, P < 2.2e–16) for seven key bacterial species. The mean inferred concentration error varied across bacteria, with rarer bacteria associated with larger errors. A total of 92% of the >0.5-log10 errors occurred when the relative abundance was <10%. Many errors occurred during early bacterial expansion from or late contraction to low abundance. When the relative abundance of a species is >10%, inferred concentrations are reliable proxies for targeted qPCR in the vaginal microbiome. However, targeted qPCR is required to capture bacteria at low relative abundance and is preferable for characterizing growth and decay kinetics of single species. IMPORTANCE Microbiome studies primarily use 16S rRNA gene amplicon sequencing to assess the relative abundance of bacterial taxa in a community. However, these measurements do not accurately reflect absolute taxon concentrations. We sought to determine whether the product of species’ relative abundance and total bacterial load measured by broad-range qPCR is an accurate proxy for individual species’ concentrations, as measured by taxon-specific qPCR assays. Overall, the inferred bacterial concentrations were a reasonable proxy of species-specific qPCR values, particularly when bacteria are present at a higher relative abundance. This approach offers an opportunity to assess the concentrations of bacterial species and how they change in a community over time without developing individual qPCR assays for each taxon.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1013
Author(s):  
Yoon Hee Lee ◽  
Gi-Ung Kang ◽  
Se Young Jeon ◽  
Setu Bazie Tagele ◽  
Huy Quang Pham ◽  
...  

Although emerging evidence revealed that the gut microbiome served as a tool and as biomarkers for predicting and detecting specific cancer or illness, it is yet unknown if vaginal microbiome-derived bacterial markers can be used as a predictive model to predict the severity of CIN. In this study, we sequenced V3 region of 16S rRNA gene on vaginal swab samples from 66 participants (24 CIN 1−, 42 CIN 2+ patients) and investigated the taxonomic composition. The vaginal microbial diversity was not significantly different between the CIN 1− and CIN 2+ groups. However, we observed Lactobacillus amylovorus dominant type (16.7%), which does not belong to conventional community state type (CST). Moreover, a minimal set of 33 bacterial species was identified to maximally differentiate CIN 2+ from CIN 1− in a random forest model, which can distinguish CIN 2+ from CIN 1− (area under the curve (AUC) = 0.952). Among the 33 bacterial species, Lactobacillus iners was selected as the most impactful predictor in our model. This finding suggests that the random forest model is able to predict the severity of CIN and vaginal microbiome may play a role as biomarker.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 205 ◽  
Author(s):  
Iolanda Garcia-Grau ◽  
David Perez-Villaroya ◽  
Davide Bau ◽  
Marta Gonzalez-Monfort ◽  
Felipe Vilella ◽  
...  

Investigation of the microbial community in the female reproductive tract has revealed that the replacement of a community dominated by Lactobacillus with pathogenic bacteria may be associated with implantation failure or early spontaneous abortion in patients undergoing assisted reproductive technology (ART) treatment. Herein we describe taxonomically and functionally the endometrial microbiome of an infertile patient with repeated reproductive failures (involving an ectopic pregnancy and two clinical miscarriages). The microbiological follow-up is presented over 18-month in which the microbiota was evaluated in six endometrial fluid samples. The microbial profile of 16S rRNA gene sequencing showed a persistent infection with Gardnerella and other bacterial taxa such as Atopobium and Bifidobacterium. In addition, taxonomic and functional analysis by whole metagenome sequencing in the endometrial fluid sample collected before one clinical miscarriage suggested the presence of multiple Gardnerella vaginalis clades with a greater abundance of clade 4, usually associated with metronidazole resistance. These results revealed a persistent G. vaginalis endometrial colonization presenting genetic features consistent with antimicrobial resistance, biofilm formation, and other virulence factors, which could be related to the reproductive failure observed.


2004 ◽  
Vol 16 (9) ◽  
pp. 261 ◽  
Author(s):  
G. Sivaramakrishnan ◽  
M. J. Jasper ◽  
S. O'Leary ◽  
S. A. Robertson

Commensal bacteria of the Lactobacillus genus are implicated in beneficial 'probiotic' roles in the gut and other mucosal tissues. Their presence reduces the incidence of pathogenic infections, both passively and via production of antimicrobial substances, and through Toll-like receptor-mediated activation of cytokine expression in host tissues. Lactobacilli are present in the female reproductive tract but have not been examined in the male. This study aimed to investigate, by selective culture techniques and real-time quantitative PCR, the prevalence in boar seminal plasma of Lactobacilli compared with other pathogenic bacteria. Using acidified Rogosa Agar, Lactobacilli were cultured from 3/3 fresh semen samples and were found to be most prevalent in the first fraction of the ejaculate. For PCR, DNA was extracted from reference bacterial cultures and archived seminal plasma samples from 40 healthy boars. Bacterial species-specific primers targeting Lactobacillus 16s and 16s-23s rDNA sequences, and Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus-specific Sau3AI, oprL, and 16s rDNA genes respectively, were used in real-time PCR assays employing SYBRgreen (Applied Biosystems) technology. Lactobacilli were detected in 22/40 (55%) of seminal plasma samples, while pathogenic bacteria were detected in <10% of samples (Staphylococcus aureus, 1/40; Pseudomonas aeruginosa, 2/40; and Bacillus, 3/40). The Lactobacillus content of individual boars ranged from 1.5 to 15 × 106 cells/mL, and within boars, content varied within 30% of the mean value in successive samples over a 6-month period. We conclude that Lactobacilli are present in abundance in boar seminal plasma compared to other potentially pathogenic bacteria. These bacteria may protect the male tract from pathogen infection, and after ejaculation, may influence the female immune response to male antigens. Ongoing studies will investigate whether Lactobacilli abundance in seminal plasma correlates with boar fertility, and examine the potential value of improving reproductive performance in pigs and other species by administration of probiotic agents.


2020 ◽  
Vol 5 (2) ◽  
pp. 93-102
Author(s):  
Soumya Chatterjee ◽  
Sibnarayan Datta ◽  
Leeza Banu ◽  
Mohan G. Vairale ◽  
Sonika Sharma

Microflora plays an important role in modulating environmental quality. Among microflora, bacteria are omnipresent in the environment. Pathogenic bacteria, present in air, are known to affect significantly the health and well-being of human, animal or plant populations. Air bacteria monitoring is thus essential for surveillance of pathogenic microorganisms from public health perspective besides its significant implications in detection and mitigation of biothreat related issues. Despite the geo-politically strategic importance of northeast India, there is scarcity of data on human health and disease surveillance. Considering these facts, we, for the first time studied the bacterial diversity of air at six important sites adjacent to the international border in the northeast region of India, having an altitude range of 73 m (Tezpur) to 4170 m (Sela Pass) above sea level. Standard microbiological techniques, such as Tryptone Soya Agar, Mannitol salt and McConkey agar strips and plates were used for air bacterial load assessment and culture for subsequent analysis using biochemical and molecular techniques. Following RFLP study, twenty six different bacterial colonies were isolated. Subsequently, bacteria identification was carried out by examining the substrate utilisation patterns, sequencing 16S rRNA gene and phylogenetic analysis. Results of the study reveal that the isolates mostly belong to two genera Bacillus and Staphylococcus (eleven in each genus), along with Micrococcus, Pseduomonas and Acinetobacter. Based on significant match of our sequences with that of medically important bacterial 16S rRNA sequences available at 16SpathDB 2.0 and review of available literature, we found that a number of these bacterial species have the pathogenic potential. In this manuscript we report our results and discuss the importance of air bacterial surveillance from the perspective of human health, hygiene and biothreat mitigation.


Author(s):  
Supriya D. Mehta ◽  
Garazi Zulaika ◽  
Fredrick O. Otieno ◽  
Elizabeth Nyothach ◽  
Walter Agingu ◽  
...  

The vaginal microbiome (VMB) impacts numerous health outcomes, but evaluation among adolescents is limited. We characterized the VMB via 16S rRNA gene amplicon sequencing, and its association with Bacterial vaginosis (BV) and sexually transmitted infections (STIs; chlamydia, gonorrhea, trichomoniasis) among 436 schoolgirls in Kenya, median age 16.9 years. BV and STI prevalence was 11.2% and 9.9%, respectively, with 17.6% of girls having any reproductive tract infection. Three community state types (CST) accounted for 95% of observations: CST-I L.crispatus-dominant (N=178, BV 0%, STI 2.8%, sexually active 21%); CST-III L.iners-dominant (N=152, BV 3.3%, STI 9.7%, sexually active 35%); CST-IV G.vaginalis-dominant (N=83, BV 51.8%, STI 25.3%, sexually active 43%). In multivariable adjusted analyses, sexually active girls had increased odds of CST-III and CST-IV, and use of cloth to manage menses had 1.72-fold increased odds of CST-IV vs. CST-I. The predominance of L.crispatus-dominated VMB, substantially higher than observed in prior studies of young adult and adult women in sub-Saharan Africa, indicates that non-optimal VMB can be an acquired state. Interventions to maintain or re-constitute L.crispatus dominance should be considered even in adolescents.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S594-S595
Author(s):  
S Ellul ◽  
P Rausch ◽  
A Pisani ◽  
C Bang ◽  
P Ellul ◽  
...  

Abstract Background The role of microbiome with the alteration between commensal and pathogenic bacteria, has been linked to IBD. Meanwhile Escherichia coli Nissle 1917, Lactobacillus rhamnosus GG (LGG) and faecal transplantation are used in IBD. The aim of this study was to prospectively determine faecal microbiota composition of newly diagnosed treatment naïve IBD patients. Methods Patients diagnosed with IBD between January 2018-September 2019 were recruited. Clinical data was collected and patients asked to submit stool samples for microbiome analysis. Stool samples from a control population were recruited and analysed via the bacterial 16s rRNA gene sequencing on illumine MiSeq. Results 100 IBD patients (CD: n=46, UC: n=53 & IBDU: n=1) and 97 controls with specific inclusion and exclusion criteria collected. IBD patients were noted to display reduced average species richness and community evenness compared to healthy controls (Alpha- Diversity) (Figure 1). Beta-diversity between microbial communities of healthy individuals and IBD patients was significantly different, but no observed separation between the two types of IBD was noted (Figure 2). 11 ASVs were abundant in CD patients including: ASV-70 – Lactobacillus gasseri, Klebsiella uncl., Candidatus-saccharibacteria, ASV-157 - Acteroides clarus and ASV 249- Parasutterella uncl. In UC cohort, 10 ASVs were abundant including: ASV 6-Escherichia/Shigella uncl., ASB-41-Sutterella wadsworthensis, ASV 44- Bacteroides faecis and Actinobacteria. An association between UC and ASV 313 (Faecalibacteria) was present. In the microbiome of healthy controls, 20 ASVs were abundant, including: ASV-14 G-Alistipes uncl., ASV 20-(Akkermansia muciniphila),(bacterium belonging to the phylum Verrucomicrobia), ASV 321 (Clostridia uncl.), ASV 96 (Rumminococcaceae uncl.), Alistepes uncl. (ASV 61), Subdoligranulum uncl. (ASV 453) and the unclassifiable bacteria. A higher amount of Verrucomicrobia was present in the healthy group as opposed to the IBD. Conclusion ASV 249- Parasutterella unlc., was indicative of CD associated microbiome through the indicator species analysis. Typical microbiome changes in IBD patients include increased abundance of the pro-inflammatory species with a reduction in anti-inflammatory bacterial species, with a noticeable reduction in alpha and beta diversity. In the local cohort, a particular change in the local α- and β diversity was noted to be present between healthy controls and IBD cohort. This could be a potential way in which targeted therapeutic approaches using specific dosage and durations of probiotic or faecal transplant can be used to alter faecal microbiome using specific bacteria present in healthy controls and with elimination of potentially harmful bacteria in IBD patients. Figure 1: Alpha diversity between different Groups using Chao1 species richness and Simpson 1-D Figure 2: Beta diversity between different groups using Bray-Curtis dissimilarity, Jaccard distance.


Sign in / Sign up

Export Citation Format

Share Document