PSX-B-6 Effect of slow-release urea on gas production, fermentation characteristics, nutrient digestibility and microbial protein synthesis in an artificial rumen system

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 454-455
Author(s):  
Yongmei Guo ◽  
Ling Xiao ◽  
Sumei Yan ◽  
Long Jin ◽  
Trevor Alexander ◽  
...  

Abstract The objective of this study was to evaluate the effects of slow-release urea (SRU) on gas production, fermentation parameters, nutrient digestibility, and microbial protein synthesis using artificial rumen system. The experiment was a completely randomized design with four treatments and four replications of each treatment. The treatments were control diet (no SRU), control diet supplemented with 0.28% (U28), 0.56% SRU (U56) or control diet that was added by 1.5% more corn grain and substituted with 0.35% SRU for 1.85% soybean meal (U35-SBM). The diets were formulated to be isoenergetic (1.71 NEL Mcal/kg), but protein concentration was lower (15.48 vs. 16.24%) and starch concentration was higher (28.2 vs. 27.1%) with U35-SBM than other three treatments. Experimental period consisted of 8 d of adaptation and 7 d of sampling. Rumen inoculum was obtained from three ruminally fistulated Angus cows fed the same diet to the substrate incubated. Gas production (L/d) was lower (P = 0.02) with U35-SBM (1.51) than control (1.79) or U28 (1.92); however, methane production was not affected by treatments (average, 47 mg/d). Dry matter digestibility was greater (P < 0.01) with U35-SBM (78.5%) than other treatments (74.6%), which had no differences in DM digestibility. Total volatile fatty acid (VFA) production did not differ among treatments (average, 53.1 mmol/d), but increasing SRU supplementation linearly (P < 0.01) decreased molar proportion of propionate from 27.0 to 25.7% and linearly (P < 0.01) increased acetate to propionate ratio from 1.69 to 1.78. The ammonia nitrogen (N) linearly (P < 0.01) increased from 7.70 to 10.25 mmol/L with increasing SRU addition. Microbial protein synthesis was greater (P = 0.03) with SRU treatments (average, 83.9 mg N/d) than control (78.9 mg N/d). The present results demonstrated the benefits to add the SRU in dairy cow diet for improving ruminal digestibility and microbial protein synthesis.

2020 ◽  
Vol 4 (2) ◽  
pp. 839-847
Author(s):  
Daryoush Alipour ◽  
Atef Mohamed Saleem ◽  
Haley Sanderson ◽  
Tassilo Brand ◽  
Laize V Santos ◽  
...  

Abstract This study evaluated the effect of combinations of feed-grade urea and slow-release urea (SRU) on fermentation and microbial protein synthesis within two artificial rumens (Rusitec) fed a finishing concentrate diet. The experiment was a completely randomized, dose–response design with SRU substituted at levels of 0% (control), 0.5%, 1%, or 1.75% of dry matter (DM) in place of feed-grade urea, with four replicate fermenters per dosage. The diet consisted of 90% concentrate and 10% forage (DM basis). The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Dry matter and organic matter disappearances were determined after 48 h of incubation from day 9 to 12, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured from day 9 to 12. Microbial protein synthesis was determined on days 13–15. Increasing the level of SRU quadratically affected total VFA (Q, P = 0.031) and ammonia (Q, P = 0.034), with a linear increment in acetate (L, P = 0.01) and isovalerate (L, P = 0.05) and reduction in butyrate (L, P = 0.05). Disappearance of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was quadratically affected by levels of SRU, plateauing at 1% SRU. Inclusion of 1% SRU resulted in the highest amount of microbial nitrogen associated with feed particles (Q, P = 0.037). Responses in the efficiency of microbial protein synthesis fluctuated (L, P = 0.002; Q, P = 0.001) and were the highest for 1% SRU. In general, the result of this study showed that 1% SRU in combination with 0.6% urea increased NDF and ADF digestibility and total volatile fatty acid (TVFA) production.


2017 ◽  
Vol 57 (4) ◽  
pp. 636 ◽  
Author(s):  
A. Khezri ◽  
S. Javidan ◽  
O. Dayani ◽  
R. Tahmasbi

Four ruminally cannulated mature Kermani sheep (50 ± 2.3 kg and 40 ± 2.1 months old) were used in a 4 × 4 Latin square design to determine the effects of diets with different levels of date pulp (DP) on ruminal fermentation, nutrient digestibility and microbial protein synthesis. DP was replaced for wheat bran in diets at no DP (0 DP), 7 (7 DP), 14 (14 DP) and 21% (21 DP) of diet dry matter (DM) and were fed twice daily (0800 hours and 1800 hours). In this study, increasing the amount of DP in diets of sheep did not affect DM intake and apparent digestibility of nutrient (P > 0.05). Inclusion of DP in diets increased ruminal pH linearly (P < 0.05), but did not influence total volatile fatty acids and molar proportion of individual volatile fatty acids (P > 0.05). Ruminal ammonia nitrogen concentration (6.04 vs 10.13 mmol/L), and blood urea nitrogen (8.59 vs 13.10 mg/dL) were affected by diets (P < 0.05). Moreover, urinary nitrogen excretion was higher (P < 0.05) for Control diet (no DP) than the 21 DP diet. In this study, urinary excretion of purine derivatives and microbial protein synthesis were affected by experimental diets (P < 0.05). In conclusion, this study showed that DP at 14% can be used as an alternative feed resource in sheep nutrition especially in semiarid areas.


2020 ◽  
Vol 43 ◽  
pp. e48684
Author(s):  
Zahra Alizadeh ◽  
Asadollah Teymouri Yansari ◽  
Yadollah Chashnidel ◽  
Mohammad Kazemifard ◽  
Samaneh Azarpajouh

The objective of this study was to determine the effect of soybean meal replacement by slow-release urea on feed intake, ruminal parameters, blood metabolites, dry matter, nutrients digestion, and microbial protein synthesis (MPS) in ram. Rams were used for four 21-day periods. The experimental design was a 4×4 Latin square design. The experiment has consisted of the following four rations: 1) basic diet with soybean meal as a protein source, 2) basic diet with soybean meal plus 0.5 % of DM slow-release urea (SRU), 3) basic diet with soybean meal plus 1 % of DM SRU, and 4) basic diet with soybean meal plus 1.5 % of SRU, respectively. Soybean meal replacement by SRU decreased ruminal ammonia and blood urea. SRU increase in diets significantly increased acetic acid 3 hours after morning feeding, blood glucose, total purine, uric acid excretion, microbial nitrogen, and microbial protein. The results showed that soybean meal replacement by SRU sources had no negative effect on rams performance.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 395-395
Author(s):  
Paul Tamayao ◽  
Gabriel O Ribeiro ◽  
Tim A McAllister ◽  
Hee-Eun Yang ◽  
A M Saleem ◽  
...  

Abstract This study investigated the effects of post-pyrolysis treated biochar on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation and microbial protein synthesis in an artificial rumen system (RUSITEC) fed a barley silage-based diet. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% mineral/vitamin supplement (DM basis). Three spruced-based biochars, treated post-pyrolysis with either zinc chloride, hydrochloric acid/nitric acid mixture or sulfuric acid were added at 2.0% of substrate DM. In a randomized complete block design, treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC systems. The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Nutrient disappearance of dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined after 48 h of incubation from d 9 to 12, and microbial protein synthesis was measured from d 13–15. Data were analyzed using PROC MIXED in SAS, with the fixed effect of treatment and random effect of RUSITEC system and vessel. Biochar inclusion did not affect disappearance of DM (P = 0.49), OM (P = 0.60), CP (P = 0.14), NDF (P = 0.48), ADF (P = 0.11) or starch (P = 0.58). Biochar also had no effect on total gas production (P = 0.31) or CH4 produced expressed as a % of total gas production (P = 0.06), mg/d (P = 0.70), mg/g of DM incubated (P = 0.74), or mg/g of DM digested (P = 0.64). No effect on total VFA (P = 0.56) or NH3-N (P = 0.20) production were observed. Neither microbial protein synthesis nor total protozoa count were affected by biochar addition (P &gt; 0.05). In conclusion, biochar inclusion in a silage-based diet did not exhibit the potential to mitigate CH4 emissions or improve digestion in a RUSITEC system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2017 ◽  
Vol 9 (7) ◽  
pp. 164 ◽  
Author(s):  
Renato Tonhá Alves Júnior ◽  
Evaristo Jorge Oliveira de Souza ◽  
Airon Aparecido Silva de Melo ◽  
Dulciene Karla De Andrade Silva ◽  
Thaysa Rodrigues Torres ◽  
...  

Four concentrations (0, 200, 400, 600 and 800 mg extract per ml of water) of mesquite extract were used as phytogenic additive to verify the potential to increase the nutritional value of the feed, ruminal parameters (primarily propionate production) and nitrogen use efficiency, microbial protein synthesis and quantify the reduction of ciliated protozoa and characterize the ingestive behavior of sheep. Ten adult male sheep were subjected to a 5 × 5 double Latin square design. Prior to feeding, the animals received the mesquite extract. Nutrient intake was estimated from the difference of the amount of feed provided and the total surplus. Rumen content samples were collected to evaluate the profile of short-chain fatty acids, ammonia nitrogen, pH, ciliated protozoa, turnover rate and disappearance rate. To estimate the microbial protein synthesis, the technique of purine derivatives was used. The mesquite extract quadratically increased (P < 0.05) the digestibility of dry matter, organic matter, crude protein and total digestible nutrients, as well as increased propionate production, acetate:propionate ratio and microbial protein synthesis. The numbers of ciliate protozoa in the rumen decreased as a result of mesquite extract inclusion in the diet. The use of mesquite pod extract at a concentration of 488 mg/mL is recommended to improve digestibility of dry matter, organic matter, crude protein and total digestible nutrients, and to optimize microbial protein synthesis and increase propionic acid production.


2021 ◽  
Vol 194 ◽  
pp. 106293
Author(s):  
Gildênia Araújo Pereira ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gherman Garcia Leal de Araújo ◽  
Raniere de Sá Paulino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document