Micronutrient Fertilization of Greenhouse Cucumbers Mitigates Pirimicarb Resistance in Aphis gossypii (Hemiptera: Aphididae)

2020 ◽  
Vol 113 (6) ◽  
pp. 2864-2872
Author(s):  
Mohammad Homayoonzadeh ◽  
Mojtaba Esmaeily ◽  
Khalil Talebi ◽  
Hossein Allahyari ◽  
Jamasb Nozari ◽  
...  

Abstract The nutritional status of host plants can have direct impacts on herbivore physiology and insect–plant interactions. We investigated the effect of micronutrients, including manganese, iron, zinc, and copper, on cucumber plant physiology, and on the biology and physiology of a strain of Aphis gossypii Glover selected over 12 generations to be resistant to pirimicarb. The micronutrient treatment increased the activity of superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase in cucumber plants, and also increased levels of total phenolics, hydrogen peroxide, salicylic acid, and total chlorophyl, whereas malondialdehyde levels were unaffected. Pirimicarb-resistant cotton aphids that fed on micronutritient-amended cucumber plants expressed significantly decreased levels of acetylcholinesterase and detoxifying enzymes, specifically glutathione S-transferase, and carboxylesterase. Analysis of energy reserves in resistant A. gossypii fed on micronutritient-amended plants revealed decreases in the lipid and protein contents of aphids, whereas glycogen and carbohydrate contents showed no response. Resistant cotton aphids fed on micronutritient-amended plants showed significantly reduced fecundity, longevity, and reproductive periods, and a 1.7-fold reduction in pirimicarb LC50 compared with those fed on control plants. We conclude that micronutrient amendment negatively impacts the biological performance of insecticide-resistant cotton aphids, and diminishes their resistance to pirimicarb. Both direct effects on plant health, such as enhanced inducible defenses, and indirect effects on aphid fitness, such as reduced biological performance and detoxification abilities, were implicated. Therefore, optimization of micronutrient amendments could be a useful complement to other tactics for managing insecticide-resistant A. gossypii on cucumbers, and warrants exploration in other contexts.

2020 ◽  
Vol 48 (3) ◽  
pp. 1260-1275
Author(s):  
Malihe JAHANI ◽  
Ramazan Ali KHAVARI-NEJAD ◽  
Homa MAHMOODZADEH ◽  
Sara SAADATMAND

Interaction of nanoparticles (NPs) as a significant threat to ecosystems with biological processes of plants is very important. Here, the effects of cobalt oxide (Co3O4) NPs on some physio-biochemical characteristics of Brassica napus L. were investigated. The two-weeks seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1). The results showed that this treatment significantly affected the fresh and dry weights, area, relative water content (RWC) and relative chlorophyll value (SPAD) of leaves. The highest reduction of growth and biomass indexes occurred at 4000 mg L-1 NPs. The content of H2O2 and electrolyte leakage (EL) increased respectively, after 100 and 250 mg L-1 of Co3O4 NPs and showed a maximum level at 4000 mg L-1. The activities of phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX) and superoxide dismutase (SOD) increased after 100 mg L-1 of Co3O4 NPs. However, tyrosine ammonia lyase (TAL) activity enhanced after 500 mg L-1. The catalase (CAT) activity and protein content decreased after 1000 mg L-1 of Co3O4 NPs. Application of concentrations higher than 500 mg L-1 of Co3O4 NPs induced polyphenol oxidase (PPO) activity but reduced glutathione reductase (GR). The activities of guaiacol peroxidase (GPX) and glutathione S-transferase (GST) increased at 250-1000 mg L-1 of Co3O4 NPs and then decreased. These results suggested that low concentrations of Co3O4 NPs induced a positive effect on growth parameters but high levels caused extensive oxidative damage and mediated defense responses by organization of phenolic compounds and antioxidative system.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 413 ◽  
Author(s):  
Katarzyna Głowacka ◽  
Anna Źróbek-Sokolnik ◽  
Adam Okorski ◽  
Janusz Najdzion

The analysis of the effects of cadmium (Cd) on plant cells is crucial to understand defense mechanisms and adaptation strategies of plants against Cd toxicity. In this study, we examined stress-related enzyme activities after one and seven days of Cd application and the ultrastructure of roots of Pisum sativum L. after seven days of Cd treatment (10, 50, 100, and 200 μM CdSO4). Our results showed that phenylalanine ammonia-lyase (PAL) activity and the amount of Cd accumulated in the roots were significantly positively correlated with the Cd concentration used in our experiment. However, Cd caused a decrease of all studied antioxidative enzyme activities (i.e., catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX)). The analysis of the ultrastructure (TEM) showed various responses to Cd, depending on Cd concentrations. In general, lower Cd concentrations (50 and 100 μM CdSO4) mostly resulted in increased amounts of oil bodies, plastolysomes and the accumulation of starch granules in plastids. Meanwhile, roots treated with a higher concentration of Cd (200 μM CdSO4) additionally triggered protective responses such as an increased deposition of suberin lamellae in the endodermal cell walls. This indicates that Cd induces a complex defense response in root tissues.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1556 ◽  
Author(s):  
Asgar Ebadollahi ◽  
Masumeh Ziaee ◽  
Franco Palla

On the basis of the side effects of detrimental synthetic chemicals, introducing healthy, available, and effective bioagents for pest management is critical. Due to this circumstance, several studies have been conducted that evaluate the pesticidal potency of plant-derived essential oils. This review presents the pesticidal efficiency of essential oils isolated from different genera of the Lamiaceae family including Agastache Gronovius, Hyptis Jacquin, Lavandula L., Lepechinia Willdenow, Mentha L., Melissa L., Ocimum L., Origanum L., Perilla L., Perovskia Kar., Phlomis L., Rosmarinus L., Salvia L., Satureja L., Teucrium L., Thymus L., Zataria Boissier, and Zhumeria Rech. Along with acute toxicity, the sublethal effects were illustrated such as repellency, antifeedant activity, and adverse effects on the protein, lipid, and carbohydrate contents, and on the esterase and glutathione S-transferase enzymes. Chemical profiles of the introduced essential oils and the pesticidal effects of their main components have also been documented including terpenes (hydrocarbon monoterpene, monoterpenoid, hydrocarbon sesquiterpene, and sesquiterpenoid) and aliphatic phenylpropanoid. Consequently, the essential oils of the Lamiaceae plant family and their main components, especially monoterpenoid ones with several bioeffects and multiple modes of action against different groups of damaging insects and mites, are considered to be safe, available, and efficient alternatives to the harmful synthetic pesticides.


2014 ◽  
Vol 105 (1) ◽  
pp. 13-22 ◽  
Author(s):  
A. Garzón ◽  
F. Budia ◽  
P. Medina ◽  
I. Morales ◽  
A. Fereres ◽  
...  

AbstractThe effects of two aphidophagous predators, the larvae of Chrysoperla carnea and adults of Adalia bipunctata, on the spread of cucumber mosaic virus (CMV) transmitted in a non-persistent manner by the cotton aphid Aphis gossypii were studied under semi-field conditions. Natural enemies and aphids were released inside insect-proof cages (1 m ×1 m ×1 m) with a central CMV-infected cucumber plant surrounded by 48 healthy cucumber seedlings, and the spatiotemporal dynamics of the virus and vector were evaluated in the short and long term (1 and 5 days) in the presence and absence of the natural enemy. The spatial analysis by distance indices methodology together with other indices measuring the dispersal around a single focus was used to assess the spatial pattern and the degree of association between the virus and its vector. Both natural enemies significantly reduced the number of aphids in the CMV-source plant after 5 days but not after 1 day. The CMV transmission rate was generally low, especially after 1 day, due to the limited movement of aphids from the central CMV-source plant, which increased slightly after 5 days. Infected plants were mainly located around the central virus-infected source plant, and the percentage of aphid occupation and CMV-infected plants did not differ significantly in absence and presence of natural enemies. The distribution patterns of A. gossypii and CMV were only coincident close to the central plant. The complexity of multitrophic interactions and the role of aphid predators in the spread of CMV are discussed.


Botany ◽  
2010 ◽  
Vol 88 (10) ◽  
pp. 901-911 ◽  
Author(s):  
Hnia Yaakoubi ◽  
Guy Samson ◽  
Mustapha Ksontini ◽  
Wided Chaibi

In this study, we examined the relevance of polyphenols in the response of sunflower plants to acute Cu and Cd stresses. More specifically, we aimed to correlate spatially and temporally the accumulation of polyphenols with the occurrence of oxidative stress, and to estimate their contribution to the antioxidant capacities. Under our experimental conditions, the presence of Cu and Cd (75 µmol·L–1) in the nutrient solution caused oxidative damage, as detected by the accumulation of malondialdehyde, in roots of Cu-treated plants and in leaves of Cd-treated plants; in the latter, significant inhibition of photosynthesis also occurred. These effects were in agreement with the preferential accumulation of Cu in the roots and the greater translocation of Cd to the shoots. This oxidative damage was associated with a concerted plant response, characterized by stimulation of phenylalanine ammonia-lyase, ascorbate peroxidase, and guaiacol peroxidase activities, and by the accumulation of polyphenols whose concentrations were closely correlated (R2 = 0.95) to the total antioxidant capacity of plants extracts. Globally, the co-occurrence of oxidative damages and polyphenol accumulation, and the correlations among polyphenol concentrations, total antioxidant capacities, and stimulations of the peroxidases support the involvement of polyphenols in protection against oxidative damage generated by Cu and Cd in plants.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 480
Author(s):  
Jan Dampc ◽  
Mateusz Mołoń ◽  
Tomasz Durak ◽  
Roma Durak

Thermal stress in living organisms causes an imbalance between the processes of creating and neutralizing reactive oxygen species (ROS). The work aims to explain changes in the aphid–host plant interaction due to an increase in temperature. Tests were carried out at three constant temperatures (20, 25, or 28 °C). Firstly, changes in development of Macrosiphum rosae were determined. Secondly, the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) in aphid M. rosae tissues and host plant were analyzed at all temperatures. An increase in temperature to 28 °C had a negative effect on the biology of M. rosae by shortening the period of reproduction and longevity, thus reducing the demographic parameters and fecundity. Two stages of the aphid’s defensive response to short-term (24–96 h) and long-term (2 weeks) thermal stress were observed. Aphid defense responses varied considerably with temperature and were highest at 28 °C. In turn, for the plants, which were exposed to both abiotic stress caused by elevated temperature and biotic stress caused by aphid feeding, their enzymatic defense was more effective at 20 °C, when enzyme activities at their highest were observed.


Author(s):  
Farhan Ali ◽  
Nan Bai ◽  
Fengyin Yang ◽  
Xiaoyue Hu ◽  
Yongmo Wang

The cotton-melon aphid, Aphis gossypii Glover, an extremely polyphagous pest insect, comprises of sympatric populations specialized on deferent host plants. The life history of A. gossypii infesting cucurbit crops remains elusive because oviparous aphids from overwintering hosts (often hibiscus) cannot colonize cucurbit crops. We verified that the hibiscus-specialized lineage (HI) suffered high mortality and gave birth to very few nymphs developing into yellow dwarfs when transferred to fresh cucumber because the HI lineage was unable to ingest phloem sap from fresh cucumber. However, the HI lineage ingested phloem sap successfully when cucumber leaves were pre-infected with Pseudoperonospora cubensis, a biotrophic phytopathogen, accompanied by significant fitness improvement. More surprisingly, the HI lineage with feeding experience on pre-infected cucumber for two generations performed as well as the cucumber-specialized lineage (CU) did on fresh cucumber, and inflicted typical damage symptom to healthy cucumber plant. This phytopathogen mediated host plant adaptation may be widespread in polyphagous aphids.


2001 ◽  
Vol 28 (8) ◽  
pp. 785 ◽  
Author(s):  
Essaid Ait Barka

In previous studies with tomato (Lycopersicon esculentum L.) exposed to a low level (3.7 kJ m –2) of UV-C (λ: 254 nm) radiation, which is defined as a beneficial level, we report a delay in fruit ripening by at least 1 week for treated fruit. In the present study, we investigate the changes in the activities of different enzymes involved in defense mechanisms, such as guaiacol peroxidase, ascorbate peroxidase, catalase, superoxide dismutase, ascorbate oxidase, lipoxygenase and phenylalanine ammonia lyase in tomato fruit in response to a beneficial level of UV-C. The irradiation leads to an increase in the guaiacol peroxidase and ascorbate peroxidase activities, whereas catalase activity remains similar to the control. The activities of superoxide dismutase and ascorbate oxidase were significantly reduced after UV-C exposure. In UV-C-treated fruit, an increase of lipoxygenase and phenylalanine ammonia lyase activities occurred within the first 5 d, followed by a second period in which these activities were below those of the control. Our study suggests that the level of UV-C used induced a rapid but moderate accumulation of photooxidation products, to which plants react by stimulating their defence mechanisms against oxidation. This activation may explain the delay observed in ripening and senescence of irradiated tomato fruit.


1996 ◽  
Vol 127 (4) ◽  
pp. 469-473 ◽  
Author(s):  
E. O. Owusu ◽  
M. Horiike

SUMMARYEffects of temperature, hydrogen ion and substrate concentrations on conjugation of l-chloro-2,4-dinitrochlorobenzene by glutathione S-transferase from susceptible and dichlorvos-resistant strains of cotton aphid (Aphis gossypii Glover (Homoptera: Aphididae)) were evaluated. Enzymes from both strains had common optimum temperature and substrate concentration values of 30 °C and 10 mM respectively. Also, while enzyme activity of the susceptible strain peaked at pH 7·2, that of the resistant strain showed complete linear dependency up to pH 8·0. Of four subcellular fractions, the 100 000 g supernatant (soluble fraction) gave the highest enzyme activity in both phosphate and Tris/HCl buffers. There was no linear relationship between insecticide application frequency and production of enzyme activity in the susceptible strain but there was a very high positive correlation between these two parameters in the resistant strain.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2223
Author(s):  
Ivna Štolfa Čamagajevac ◽  
Rosemary Vuković ◽  
Kristina Vuković ◽  
Ana Vuković ◽  
Vladimir Ivezić ◽  
...  

In this study, we evaluated the leaf antioxidative responses of three wheat varieties (Srpanjka, Divana, and Simonida) treated with two different forms of zinc (Zn), Zn-sulfate and Zn-EDTA, in concentrations commonly used in agronomic biofortification. Zn concentration was significantly higher in the flag leaves of all three wheat varieties treated with Zn-EDTA compared to control and leaves treated with Zn-sulfate. Both forms of Zn increased malondialdehyde level and total phenolics content in varieties Srpanjka and Divana. Total glutathione content was not affected after the Zn treatment. Zn-sulfate increased the activities of glutathione reductase (GR) and guaiacol peroxidase (GPOD) in both Srpanjka and Divana, while glutathione S-transferase (GST) was only induced in var. Srpanjka. Chelate form of Zn increased the activities of GST and GPOD in both Simonida and Divana. Catalase activity was shown to be less sensitive to Zn treatment and was only induced in var. Srpanjka treated with Zn-EDTA where GPOD activity was not induced. Concentrations of Zn used for agronomic biofortification can induce oxidative stress in wheat leaves. The antioxidative status of wheat leaves could be a good indicator of Zn tolerance, whereas wheat genotype and chemical form of Zn are the most critical factors influencing Zn toxicity.


Sign in / Sign up

Export Citation Format

Share Document