A Survey of Aedes (Diptera: Culicidae) Mosquitoes in Tunisia and the Potential Role of Aedes detritus and Aedes caspius in the Transmission of Zika Virus

2019 ◽  
Vol 56 (5) ◽  
pp. 1377-1383
Author(s):  
Wiem Ben Ayed ◽  
Fadila Amraoui ◽  
Youmna M’ghirbi ◽  
Francis Schaffner ◽  
Adel Rhaim ◽  
...  

Abstract The present study aimed to update the list of Aedes mosquito species occurring in Tunisia and to test the vector competence of Aedes (Ochlerotatus) caspius (Pallas) and Ae. (Ochlerotatus) detritus (Haliday), the locally most abundant and widespread species, to transmit Zika virus (ZIKV). In 2017–2018, mosquito larvae were collected from 39 different larval habitats in seven bioclimatic zones of Tunisia. The salinity and pH of each breeding site were measured. The survey revealed the presence of 10 Aedes species in Tunisia: Ae. (Stegomyia) albopictus (Skuse), Ae. (Ochlerotatus) berlandi (Séguy), Ae. caspius, Ae. detritus, Ae. (Finlaya) echinus (Edwards), Ae. (Finlaya) geniculatus (Olivier), Ae. (Acartomyia) mariae (Sergent and Sergent), Ae. (Ochlerotatus) pulcritarsis (Rondani), Ae. (Aedimorphus) vexans (Meigen), and Ae. (Fredwardsius) vittatus (Bigot). Of these 10 species, Ae. caspius and Ae. detritus were the most abundant in Tunisia. Aedes detritus and Ae. caspius larvae were reared until the imago stage under insectary conditions to test autogeny. The study showed that Ae. detritus is autogenous and stenogamous and Ae. caspius, anautogenous and eurygamous. Finally, the collected strains of these two species were experimentally infected with the Asian genotype of ZIKV, originally isolated from a patient in April 2014 in New Caledonia, to test their vector competence. Neither of these species was able to transmit ZIKV at 7 and 14 d postexposure. Further investigations are needed to test the competence of other Tunisian mosquito species that may be associated with ZIKV transmission.

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 434 ◽  
Author(s):  
Ajit K. Karna ◽  
Sasha R. Azar ◽  
Jessica A. Plante ◽  
Rumei Yun ◽  
Nikos Vasilakis ◽  
...  

The introduction of Zika virus (ZIKV) to the Americas raised concern that the virus would spill back from human transmission, perpetuated by Aedes aegypti, into a sylvatic cycle maintained in wildlife and forest-living mosquitoes. In the Americas, Sabethes species are vectors of sylvatic yellow fever virus (YFV) and are therefore candidate vectors of a sylvatic ZIKV cycle. To test the potential of Sabethes cyaneus to transmit ZIKV, Sa. cyaneus and Ae. aegypti were fed on A129 mice one or two days post-infection (dpi) with a ZIKV isolate from Mexico. Sa. cyaneus were sampled at 3, 4, 5, 7, 14, and 21 days post-feeding (dpf) and Ae. aegypti were sampled at 14 and 21 dpf. ZIKV was quantified in mosquito bodies, legs, and saliva to measure infection, dissemination, and potential transmission, respectively. Of 69 Sa. cyaneus that fed, ZIKV was detected in only one, in all body compartments, at 21 dpf. In contrast, at 14 dpf 100% of 20 Ae. aegypti that fed on mice at 2 dpi were infected and 70% had virus in saliva. These data demonstrate that Sa. cyaneus is a competent vector for ZIKV, albeit much less competent than Ae. aegypti.


2019 ◽  
Vol 25 (2) ◽  
pp. 346-348 ◽  
Author(s):  
Rafael Gutiérrez-López ◽  
Sean M. Bialosuknia ◽  
Alexander T. Ciota ◽  
Tomás Montalvo ◽  
Josue Martínez-de la Puente ◽  
...  

2021 ◽  
Vol 948 (1) ◽  
pp. 012039
Author(s):  
D Novianto ◽  
U K Hadi ◽  
S Soviana ◽  
Supriyono ◽  
H S Darusman

Abstract Mosquito larvae play an essential role in the ecological, and many of them can spread human and animal diseases, including in Macaca fascicularis. Information on mosquito species and their habitats can provide an overview of the role of mosquitoes in the spread of vector-borne diseases in M. fascicularis captivity area. This study aimed to identify species diversity of mosquito larvae, species affinity and association, and the larval breeding sites around M. fascicularis captivity area in Bogor, West Java. Mosquito larvae were collected from 102 sites using a 350 ml dipper. Mosquito larvae that were successfully collected consisted of 11 species; Aedes albopictus, Ae. aegypti, Armigeres subalbatus, Anopheles aconitus, An. kochi, An. vagus, Culex fuscocephala, Cx. pseudovishnui, Cx. tritaeniorhyncus, Cx. quinquefasciatus, and Cx. vishnui. Co-occurrence in mosquito larvae as many as 13 compositions, with the highest co-occurrence in Ae. albopictus and Cx. quinquefasciatus that was 11 times. There were seven types breeding sites for the larval mosquitoes, i.e containers, ditches, creeks, ponds, artificial ponds, groundwater puddles, and rice fields. We conclude the existence of mosquito larvae and the availability of their breeding site in M. fascicularis captivity area can be a potential transmission of pathogens between mosquitoes and hosts


1971 ◽  
Vol 61 (2) ◽  
pp. 299-307 ◽  
Author(s):  
Canute P. M. Khamala

Six natural terrestrial mosquito breeding habitats were recognised in the Kano Plains of Kenya by their condition, i.e. temporary or permanent, presence or absence of emergent plants, and by the chemical and physical characteristics of their water. Between September 1968 and March 1970, 13 mosquito species were found breeding in these habitats. Most species were restricted to a few habitats; only four showed a wide occurrence, being found in at least four. Anopheles gambiae Giles and Culex annulioris Theo. exploited all six habitats, suggesting that the characteristics studied were probably not critical to their selection of a breeding site. Mansonia and Coquillettidia spp. were restricted to habitats with some plants, indicating their dependence on such vegetation for respiration and protection. The indiscriminate selection of breeding sites by disease vectors, e.g. A. gambiae, A. pharoensis Theo. and Culex pipiens fatigans Wied., is worth noting in irrigation schemes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3096 ◽  
Author(s):  
Brittany L. Dodson ◽  
Jason L. Rasgon

Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. AlthoughAedesmosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, includingCulexandAnophelesspecies, and we lack a thorough understanding of which mosquito species to target for vector control. We exposedAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint,Anopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes were refractory to Zika virus infection. We conclude thatAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.


2019 ◽  
Author(s):  
Jorian Prudhomme ◽  
Albin Fontaine ◽  
Guillaume Lacour ◽  
Jean-Charles Gantier ◽  
Laure Diancourt ◽  
...  

AbstractEurope is the world’s leading tourism destination and is receiving every year travelers from areas with active arbovirus transmission. There is thus a threat of mosquito-borne virus emergence in Europe due to the presence of the invasive mosquito vector Aedes albopictus. Little attention has been paid about the possible role of indigenous mosquito species as vectors of emerging arboviruses. Here, we assessed the vector competence dynamic of Ae. geniculatus, a European anthropophilic mosquito species, for chikungunya virus (CHIKV) in comparison with Ae. albopictus.We revealed that Ae. geniculatus was highly susceptible to CHIKV infection and could transmit the virus. By specifically exploring the vector competence dynamic in both mosquito species, we revealed that the cumulative distribution of CHIKV incubation period in Ae. geniculatus was delayed by several days as compared to Ae. albopictus.Our results strengthen the importance of considering indigenous species as potential vectors for emerging arboviruses. They also revealed the importance of considering variation in arbovirus dissemination or transmission dynamics in mosquitoes when performing vector competence assays. We will discuss the implications of our results on a CHIKV outbreak dynamic in a theoretical framework.Sentence summaryThe European mosquito Aedes geniculatus is highly susceptible to CHIKV infection but disseminate and transmit the virus several days later than Ae. albopictus.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 525
Author(s):  
Thiago Nunes Pereira ◽  
Fabiano Duarte Carvalho ◽  
Jerônimo Nunes Rugani ◽  
Vanessa Rafaela de Carvalho ◽  
Jaqueline Jarusevicius ◽  
...  

The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia in three Aedes albopictus populations infected with MAYV. The vector competence was assessed based on viral infection and transmission by RT-qPCR. In addition, the microbiome was evaluated by amplification of the 16S rRNA V4 region and PCR to detect the presence of Wolbachia (strain wAlbA/wAlbB). Our results show that all three populations were susceptible to MAYV infection. The potential transmission of the MAYV was consistent in all populations of naïve mosquitoes injected (more than 50%). The microbiome analysis revealed 118 OTUs (operational taxonomic unit) from the three populations, 8 phyla, 15 classes, 26 orders, 35 families, 65 genera, and 53 species. All populations had Pseudomonas and Wolbachia as predominant genera. There was no difference between the variables for MAYV and Wolbachia (wAlbA or wAlbB) in the abdomen. However, in the head + thorax samples at 14 dpi, there was a difference between the two populations, indicating a possible correlation between the presence of Wolbachia (wAlbB) and infection. Overall, we show evidence that Ae. albopictus displays significant infection and transmission competence for the MAYV in the laboratory, and its bacterial microbiota play an important role in the host, mainly the strains of Wolbachia. The influence of the intestinal microbiota of Ae. albopictus is poorly known, and a better understanding of these interactions would open new perspectives for disease control through the manipulation of microbial communities. The exact contribution of this mosquito species to the transmission of the MAYV in the field remains to be confirmed.


2019 ◽  
Author(s):  
Reilly Jones ◽  
Manisha A. Kulkarni ◽  
Thomas M. V. Davidson ◽  
Benoit Talbot ◽  

AbstractBackgroundThree arthorpod-borne viruses (arboviruses) causing human disease have been the focus of a large number of studies in the Americas since 2013 due to their global spread and epidemiological impacts: Zika, dengue, and chikungunya viruses. A large proportion of infections by these viruses are asymptomatic. However, all three viruses are associated with moderate to severe health consequences in a small proportion of cases. Two mosquito species, Aedes aegypti and Aedes albopictus, are among the world’s most prominent arboviral vectors, and are known primary vectors for all three viruses in the Americas.ObjectivesThis review summarizes the state of the entomological literature surrounding the biology and ecology of vectors of Zika, dengue and chikungunya viruses and factors affecting virus transmission. The rationale of the review was to elucidate consensus and discord between studies, and guide future research based on identified knowledge gaps.ResultsA total of 196 studies were included in the scoping review after initial screening and subsequent exclusion of out-of-scope studies, secondary data publications, duplicate records, and studies unavailable in English language.Key findingsTemperature and humidity have the strongest impact on mosquito distribution and dynamics, development of immatures and arborviral infection rates. Low socioeconomic status and related factors, including poor infrastructure, inconsistent access to water, and high household resident density, have been consistently associated with arbovirus vector occurrence. Effects of interspecific competition on arboviral vector species is currently poorly understood. Vector competence for Zika virus is well established for Ae. aegypti and Ae. albopictus. Information on Zika virus vector transmission dynamics is sparse in contrast to the wealth of research available for dengue and chikungunya viruses.ConclusionsBased on the internationally recognized urgency of Zika virus infection as a public health concern, further research on arbovirus vectors and transmission dynamics is of pressing need.


2021 ◽  
Vol 9 (6) ◽  
pp. 1250
Author(s):  
Tey Putita Ou ◽  
Heidi Auerswald ◽  
Saraden In ◽  
Borin Peng ◽  
Senglong Pang ◽  
...  

Since the epidemic in 2007, studies on vector competence for Zika virus (ZIKV) have intensified, showing that the transmission efficiency varies depending on the vector population, ZIKV strain, and dose of the infectious blood meal. In this study, we aimed to investigate the replication of African and Asian ZIKV strains in vitro and in vivo in order to reveal their phenotypic differences. In addition, we investigated the vector competence of Cambodian Aedes aegypti (Ae. aegypti) mosquitoes (urban and rural) for these ZIKV strains. We observed a significantly higher pathogenicity of the African ZIKV strain in vitro (in mosquito and mammalian cells), and in vivo in both Ae. aegypti and mice. Both mosquito populations were competent to transmit ZIKV as early as 7 days p.i., depending on the population and the ZIKV strain. Ae. aegypti from rural habitats showed significant higher transmission and survival rates than those from urban. We observed the highest transmission efficiency for the African ZIKV isolate (93.3% 14 days p.i.) and for the Cambodian ZIKV isolate (80% 14 days p.i.). Overall, our results highlight the phenotypic differences of the ZIKV lineages and the potential risk of ZIKV transmission by Ae. aegypti mosquitoes. Further investigations of Cambodian mosquito species and ZIKV specific surveillance in humans is necessary in order to improve the local risk assessment.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 575 ◽  
Author(s):  
Rosilainy S. Fernandes ◽  
Olivia O’Connor ◽  
Maria Ignez L. Bersot ◽  
Dominique Girault ◽  
Marguerite R. Dokunengo ◽  
...  

Zika virus (ZIKV) has caused severe epidemics in South America beginning in 2015, following its spread through the Pacific. We comparatively assessed the vector competence of ten populations of Aedes aegypti and Ae. albopictus from Brazil and two of Ae. aegypti and one of Culex quinquefasciatus from New Caledonia to transmit three ZIKV isolates belonging to African, Asian and American lineages. Recently colonized mosquitoes from eight distinct sites from both countries were orally challenged with the same viral load (107 TCID50/mL) and examined after 7, 14 and 21 days. Cx. quinquefasciatus was refractory to infection with all virus strains. In contrast, although competence varied with geographical origin, Brazilian and New Caledonian Ae. aegypti could transmit the three ZIKV lineages, with a strong advantage for the African lineage (the only one reaching saliva one-week after challenge). Brazilian Ae. albopictus populations were less competent than Ae. aegypti populations. Ae. albopictus generally exhibited almost no transmission for Asian and American lineages, but was efficient in transmitting the African ZIKV. Viral surveillance and mosquito control measures must be strengthened to avoid the spread of new ZIKV lineages and minimize the transmission of viruses currently circulating.


Sign in / Sign up

Export Citation Format

Share Document