MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana

2020 ◽  
Vol 71 (14) ◽  
pp. 4140-4158 ◽  
Author(s):  
Zhongzhou Yang ◽  
Yueqing Li ◽  
Fengzhan Gao ◽  
Wei Jin ◽  
Shuying Li ◽  
...  

Abstract Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB–bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB–bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nur Suhanawati Ashaari ◽  
Mohd Hairul Ab. Rahim ◽  
Suriana Sabri ◽  
Kok Song Lai ◽  
Adelene Ai-Lian Song ◽  
...  

AbstractLinalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis–Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10–3 µM−1 s−1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.


2018 ◽  
Vol 61 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Hongwei Xun ◽  
Zhibing Zhang ◽  
Yunxiao Zhou ◽  
Xueyan Qian ◽  
Yingshan Dong ◽  
...  

2017 ◽  
Vol 89 (3) ◽  
pp. 429-441 ◽  
Author(s):  
Nikolaj L. Hansen ◽  
Allison M. Heskes ◽  
Britta Hamberger ◽  
Carl E. Olsen ◽  
Björn M. Hallström ◽  
...  

2021 ◽  
Vol 1 (19) ◽  
pp. 205-206
Author(s):  
I.V. Pinskiy

The characteristics of various miRNA binding sites in the mRNAs of the MYB transcription factor genes of Arabidopsis thaliana, Glycine max and Vitis vinifera have been established. The most conserved miRNA binding sites were the binding sites of the miR828 family.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1539-1546 ◽  
Author(s):  
M.M. Lee ◽  
J. Schiefelbein

The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.


2019 ◽  
Vol 20 (24) ◽  
pp. 6230
Author(s):  
Fengying Qiu ◽  
Xindong Wang ◽  
Yongjie Zheng ◽  
Hongming Wang ◽  
Xinliang Liu ◽  
...  

Leaves of C. porrectum are rich in essential oils containing monoterpenes, sesquiterpenes and aromatic compounds, but the molecular mechanism of terpenoid biosynthesis in C. porrectum is still unclear. In this paper, the differences in the contents and compositions of terpenoids among three chemotypes were analyzed using gas chromatography mass spectrometry (GC/MS). Furthermore, the differential expression of gene transcripts in the leaf tissues of the three C. porrectum chemotypes were analyzed through a comparison of full-length transcriptomes and expression profiles. The essential oil of the three C. porrectum chemotypes leaves was mainly composed of monoterpenes. In the full-length transcriptome of C. porrectum, 104,062 transcripts with 306,337,921 total bp, an average length of 2944 bp, and an N50 length of 5449 bp, were obtained and 94025 transcripts were annotated. In the eucalyptol and linalool chemotype, the camphor and eucalyptol chemotype, and the camphor and linalool chemotype comparison groups, 21, 22 and 18 terpene synthase (TPS) unigenes were identified respectively. Three monoterpene synthase genes, CpTPS3, CpTPS5 and CpTPS9, were upregulated in the eucalyptol chemotype compared to the linalool chemotype and camphor chemotype. CpTPS1 was upregulated in the camphor chemotype compared to the linalool chemotype and the eucalyptol chemotype. CpTPS4 was upregulated in the linalool chemotype compared to the camphor chemotype and the eucalyptol chemotype. Different unigenes had different expression levels among the three chemotypes, but the unigene expression levels of the 2-C-methyl-D-erythritol 4phosphate (MEP) pathway were generally higher than those of the mevalonate acid (MVA) pathway. Quantitative reverse transcription PCR(qRT-PCR) further validated these expression levels. The present study provides new clues for the functional exploration of the terpenoid synthesis mechanism and key genes in different chemotypes of C. porrectum.


2019 ◽  
Vol 61 (2) ◽  
pp. 318-330 ◽  
Author(s):  
Ding Huang ◽  
Zhouzhou Tang ◽  
Jialing Fu ◽  
Yue Yuan ◽  
Xiuxin Deng ◽  
...  

Abstract Anthocyanins are preferentially accumulated in certain tissues of particular species of citrus. A R2R3-MYB transcription factor (named Ruby1) has been well documented as an activator of citrus anthocyanin biosynthesis. In this study, we characterized CsMYB3, a transcriptional repressor that regulates anthocyanin biosynthesis in citrus. CsMYB3 was expressed in anthocyanin-pigmented tissues, and the expression was closely associated with that of Ruby1, which is a key anthocyanin activator. Overexpression of CsMYB3 in Arabidopsis resulted in a decrease in anthocyanins under nitrogen stress. Overexpression of CsMYB3 in the background of CsRuby1-overexpressing strawberry and Arabidopsis reduced the anthocyanin accumulation level. Transient promoter activation assays revealed that CsMYB3 could repress the activation capacity of the complex formed by CsRuby1/CsbHLH1 for the anthocyanin biosynthetic genes. Moreover, CsMYB3 could be transcriptionally activated by CsRuby1 via promoter binding, thus forming an ‘activator-and-repressor’ loop to regulate anthocyanin biosynthesis in citrus. This study shows that CsMYB3 plays a repressor role in the regulation of anthocyanin biosynthesis and proposes an ‘activator-and-repressor’ loop model constituted by CsRuby1 and CsMYB3 in the regulation of anthocyanin biosynthesis in citrus.


2013 ◽  
Vol 19 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Supriya Ambawat ◽  
Poonam Sharma ◽  
Neelam R. Yadav ◽  
Ram C. Yadav

Sign in / Sign up

Export Citation Format

Share Document