UGT85A53 promotes flowering via mediating abscisic acid glucosylation and FLC transcription in Camellia sinensis

2020 ◽  
Vol 71 (22) ◽  
pp. 7018-7029
Author(s):  
Tingting Jing ◽  
Na Zhang ◽  
Ting Gao ◽  
Yi Wu ◽  
Mingyue Zhao ◽  
...  

Abstract Uridine diphosphate (UDP)-dependent glycosyltransferases catalyse the glycosylation of small molecules and play important roles in maintaining cell homeostasis and regulating plant development. Glycosyltransferases are widely distributed, but their detailed roles in regulating plant growth and development are largely unknown. In this study, we identified a UDP-glycosyltransferase, UGT85A53, from Camellia sinensis, the expression of which was strongly induced by various abiotic stress factors and its protein product was distributed in both the cytoplasm and nucleus. Ectopic overexpression of CsUGT85A53 in Arabidopsis resulted in an early-flowering phenotype under both long- and short-day conditions. The transcript accumulation of the flowering repressor genes FLC and ABI5, an activator of FLC in ABA-regulated flowering signaling, were both significantly decreased in transgenic Arabidopsis compared with wild-type plants. The decreased expression level of FLC might be associated with an increased level of DNA methylation that was observed in CsUGT85A53-overexpressing (OE) plants. Biochemical analyses showed that CsUGT85A53 could glucosylate ABA to form inactive ABA-glycoside in vitro and in planta. Overexpression of CsUGT85A53 in Arabidopsis resulted in a decreased concentration of free ABA and increased concentration of ABA-glucoside. The early-flowering phenotype in the CsUGT85A53-OE transgenic lines was restored by ABA application. Furthermore, CsUGT85A53-OE plants displayed an ABA-insensitive phenotype with higher germination rates compared with controls in the presence of low concentrations of exogenous ABA. Our findings are the first to identify a UGT in tea plants that catalyses ABA glucosylation and enhance flowering transition as a positive regulator.

2021 ◽  
Vol 22 (16) ◽  
pp. 8986
Author(s):  
Xuan Lan Thi Hoang ◽  
Nguyen Nguyen Chuong ◽  
Tran Thi Khanh Hoa ◽  
Hieu Doan ◽  
Pham Hoang Phuong Van ◽  
...  

Abiotic stress factors, such as drought and salinity, are known to negatively affect plant growth and development. To cope with these adverse conditions, plants have utilized certain defense mechanisms involved in various aspects, including morphological, biochemical and molecular alterations. Particularly, a great deal of evidence for the biological importance of the plant-specific NAM, ATAF1/2, CUC2 (NAC) transcription factors (TFs) in plant adaptation to abiotic stress conditions has been reported. A previous in planta study conducted by our research group demonstrated that soybean (Glycine max) GmNAC085 mediated drought resistance in transgenic Arabidopsis plants. In this study, further characterization of GmNAC085 function in association with salt stress was performed. The findings revealed that under this condition, transgenic soybean plants overexpressing GmNAC085 displayed better germination rates than wild-type plants. In addition, biochemical and transcriptional analyses showed that the transgenic plants acquired a better defense system against salinity-induced oxidative stress, with higher activities of antioxidant enzymes responsible for scavenging hydrogen peroxide or superoxide radicals. Higher transcript levels of several key stress-responsive genes involved in the proline biosynthetic pathway, sodium ion transporter and accumulation of dehydrins were also observed, indicating better osmoprotection and more efficient ion regulation capacity in the transgenic lines. Taken together, these findings and our previous report indicate that GmNAC085 may play a role as a positive regulator in plant adaptation to drought and salinity conditions.


2021 ◽  
Author(s):  
Büşra Yazıcılar ◽  
ismail Bezirganoglu

Abstract Alfalfa is an important forage that contributes wildlife habitat and soil conservation worldwide and has a high nutritional feeding quality and N fixation potential. However, alfalfa production is seriously reduced by abiotic stress factors. In this study, SOS1 ,SERK1, WEE1 genes were expressed in alfalfa callus cells to control NaCl stress under in vitro conditions. The important callus traits in terms of NaCl resistance were found among the genotypes. Higher sugar contents were accumulated in tested genotypes than in control callus when all were exposed to NaCl stress. Based on proline assay, there were inverse relationships between NaCl acclimated-callus and tested genotypes. Na+ and K+ showed an increasing trend in response to the increasing concentration of NaCl. The results showed that callus growth increased salt stress related gene expression. SOS1, SERK1 and WEE1 gene expression levels peaked at 50 mM while highest Na+ and K+ and sugar content happened at 110 mM NaCl. As a result of flow cytometry analysis, there were often endopolyploidy in the tested genotypes. Our findings indicated that the SOS1, SERK1 and WEE1 genes was effective in promoting the alfalfa callus cells in response to salt stress induced by NaCl.


2016 ◽  
pp. 140-143
Author(s):  
N.V. Cotsabin ◽  
◽  
O.M. Makarchuk ◽  

The proportion of patients with multiple unsuccessful attempts of assisted reproductive technology (ART) is about 30% of all patients treated with the use of ART. Women with history of unsuccessful ART attempts - a special category of patients who require emergency attention and a thorough examination at the stage of preparation for superovulation stimulation,the selection of embryos and endometrium preparation for embryo transfer. The objective: to distinguish high-risk group of unsuccessful attempts based on a detailed analysis of anamnestic and clinical data of infertile women with repeated unsuccessful ART attempts that requires more in-depth study of hormonal features, ovarian reserve and condition of the endometrium. Materials and methods. For better understanding of the problem of repeated unsuccessful ART attempts and сreation of efficient infertility treatment algorithms for these couples we conducted a thorough analysis of anamnestic data of three groups of infertile women (105 patients), which were distributed by age: group I – younger than 35, the II group – from 35 to 40, the III group - over 40 years. These groups of patients were compared with each other and with the control group of healthy women (30 persons). Results. Leading stress factors in the percentage three times prevailed in the group of infertile women and had a direct connection with the fact of procedure «fertilization in vitro» and chronic stressors caused by prolonged infertility. Primary infertility was observed significantly more frequent in patients younger than 35 years (p <0.05), secondary infertility - mostly in the second and third experimental groups (p <0.05). Noteworthy significant percentage of wellknown causes of infertility and idiopathic factor in all groups, and the prevalence of tubal-peritoneal factor in the second and third experimental groups, and endocrine dysfunction in the I experimental group. The most common disorder among this category of woman was polycystic ovary syndrome. Frequency of usual miscarriage among patients of I ana II groups was two times higher than in the third group (p <0.05). Among the experimental groups the leading place belongs urinary tract infection, respiratory tract diseases, pathologies of the cardiovascular system. Data of the stratified analysis show an increase likelihood of repeated unsuccessful ART attempts under the influence of constant chronic stress (odds ratio OR=2.06; 95% CI: 0.95–3.17; p<0.05). Conclusions. Among infertile patients with repeated unsuccessful ART attempts must be separated a high risk group of failures. The identity depends on the duration of infertility, female age and leading combination of factors. Key words: repeated unsuccessful ART attempts, anamnesis, infertility, high risk.


Author(s):  
Dorin Sora ◽  
Mădălina Doltu

This study aimed to identification of an ecological alternative for the chemical disinfection of soil in the greenhouses from Romania. Tomato (Solanum lycopersicum L.) is one of the most popular vegetable crops in the world. The carbohydrate, vitamins, salts of important mineral elements and organic acids content of tomato fruits is very important. Tomato crops are very sensitive to climatic vagaries, so fluctuation in climatic parameters at any phase of growth can affect the yield and the fruit quality. Grafting on Solanaceae is a method which has improved and spread quickly during the past years, a similar approach to crop rotation, a practice meant to increase productivity, resistance or tolerance to biotic and abiotic stress factors and at increasing fruit quality. The research was conducted in a glass greenhouse of the Horting Institute, Bucharest, Romania. The biological material used was a Romanian tomato hybrid (Siriana F1), a Dutch tomato hybrid (Abellus F1) and four rootstocks, a Dutch tomato hybrid (Emperador F1) and three Romanian tomato cultivars (L542, L543 and L544) obtained from the Research and Development Station for Vegetable Growing, Buzău, Romania. The rootstocks have had resistance to biotic stress factors (soil diseases and pests) and the chemical disinfection of soil has was eliminated. The result of this research are presented in this paper.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Clara Azzam ◽  
Sudad Al-Taweel ◽  
Ranya Abdel-Aziz ◽  
Karim Rabea ◽  
Alaa Abou-Sreea ◽  
...  

Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL−1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets−1, number of root plantlets−1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme’s fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions.


2021 ◽  
Author(s):  
Nathalie D Lackus ◽  
Axel Schmidt ◽  
Jonathan Gershenzon ◽  
Tobias G Köllner

AbstractBenzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.


Sign in / Sign up

Export Citation Format

Share Document