Neuroimmunology for the Non-Immunologist

2019 ◽  
pp. 2-20
Author(s):  
Bibiana Bielekova

The chapter begins with a short introduction to the components of the immune system, outlining both the innate and adaptive components. It discusses the role of the immune system in protecting against infections and abnormal tissues. It describes the concepts of self-antigens, antigen presentation, and immune synapse. It then examines immune tolerance and the differing functions and capacities of the innate and adaptive immune systems. Finally, the chapter considers infections and autoimmune phenomena and how the immune system responds to these challenges.

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2096
Author(s):  
Thao N.D. Pham ◽  
Christina Spaulding ◽  
Hidayatullah G. Munshi

A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Melissa A. Walker ◽  
Stefano Volpi ◽  
Katherine B. Sims ◽  
Jolan E. Walter ◽  
Elisabetta Traggiai

Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.


2021 ◽  
Vol 71 (2) ◽  
pp. 61-64
Author(s):  
Indah Bachti Setyarini ◽  
Nurul Ratna ◽  
Ninik Mudjihartini

Coronavirus disease 2019 (COVID-19) is a global pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection, affecting millions of people worldwide due to its ease of transmission. Despite limited information on effective therapeutic options, vitamin D has been regularly reported to exert beneficial immunomodulatory effects affecting both innate and adaptive immune systems. As it is synthesized in the skin under ultraviolet radiation, population living in equatorial countries are presumed to have adequate vitamin D, however several studies have shown otherwise. This article is aimed to give an insight on the different mechanisms by which vitamin D affects our immune system in COVID-19, as well as discussing correlation of having sunlight all year round by being near the equator towards vitamin D adequacy.


Author(s):  
Cibele Rocha-Resende ◽  
Aristobolo Mendes da Silva ◽  
Marco A. M. Prado ◽  
Silvia Guatimosim

The innate and adaptive immune systems play an important role in the development of cardiac diseases. Therefore, it has become critical to identify molecules that can modulate inflammation in the injured heart. In this regard, activation of the cholinergic system in animal models of heart disease has been shown to exert protective actions that include immunomodulation of cardiac inflammation. In this mini-review, we briefly present our current understanding on the cardiac cellular sources of acetylcholine (ACh) (neuronal versus nonneuronal), followed by a discussion on its contribution to the regulation of inflammatory cells. Although the mechanism behind ACh-mediated protection still remains to be fully elucidated, the beneficial immunomodulatory role of the cholinergic signaling emerges as a potential key regulator of cardiac inflammation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Gisa Ellrichmann ◽  
Christiane Reick ◽  
Carsten Saft ◽  
Ralf A. Linker

Huntington’s disease (HD) is characterized by a progressive course of disease until death 15–20 years after the first symptoms occur and is caused by a mutation with expanded CAG repeats in the huntingtin (htt) protein. Mutant htt (mhtt) in the striatum is assumed to be the main reason for neurodegeneration. Knowledge about pathophysiology has rapidly improved discussing influences of excitotoxicity, mitochondrial damage, free radicals, and inflammatory mechanisms. Both innate and adaptive immune systems may play an important role in HD. Activation of microglia with expression of proinflammatory cytokines, impaired migration of macrophages, and deposition of complement factors in the striatum indicate an activation of the innate immune system. As part of the adaptive immune system, dendritic cells (DCs) prime T-cell responses secreting inflammatory mediators. In HD, DCs may contain mhtt which brings the adaptive immune system into the focus of interest. These data underline an increasing interest in the peripheral immune system for pathomechanisms of HD. It is still unclear if neuroinflammation is a reactive process or if there is an active influence on disease progression. Further understanding the influence of inflammation in HD using mouse models may open various avenues for promising therapeutic approaches aiming at slowing disease progression or forestalling onset of disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
R. A. Contreras ◽  
F. E. Figueroa ◽  
F. Djouad ◽  
P. Luz-Crawford

Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to immunomodulate cells from both the innate and the adaptive immune systems promoting an anti-inflammatory environment. During the last decade, MSCs have been intensively studiedin vitroandin vivoin experimental animal model of autoimmune and inflammatory disorders. Based on these studies, MSCs are currently widely used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) characterized by complex deregulation of the immune systems. However, the therapeutic properties of MSCs in arthritis are still controverted. These controversies might be due to the diversity of MSC sources and isolation protocols used, the time, the route and dose of MSC administration, the variety of the mechanisms involved in the MSCs suppressive effects, and the complexity of arthritis pathogenesis. In this review, we discuss the role of the interactions between MSCs and the different immune cells associated with arthritis pathogenesis and the possible means described in the literature that could enhance MSCs therapeutic potential counteracting arthritis development and progression.


2019 ◽  
Author(s):  
Anne Chevallereau ◽  
Sean Meaden ◽  
Olivier Fradet ◽  
Mariann Landsberger ◽  
Alice Maestri ◽  
...  

Many bacteria encode CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats; CRISPR-associated) adaptive immune systems to protect themselves against their viruses (phages)1. To overcome resistance, phages have evolved anti-CRISPR proteins (Acr), which naturally vary in their potency to suppress the host immune system and avoid phage extinction2,3,4,5. However, these Acr-phages need to cooperate in order to overcome CRISPR-based resistance4,5: while many initial infections by Acr-phages are unsuccessful, they nonetheless lead to the production of Acr proteins, which generate immunosuppressed cells that can be successfully exploited by other Acr-phages in the population4,5. Here we test the prediction that phages lacking acr genes (Acr-negative phages) may exploit this cooperative behaviour6. We demonstrate that Acr-negative phages can indeed benefit from the presence of Acr-positive phages during pairwise competitions, but the extent of this exploitation depends on the potency of the Acr protein. Specifically, “strong” Acr proteins are more exploitable and benefit both phage types, whereas “weak” Acr proteins predominantly benefit Acr-positive phages only and therefore provide a greater fitness advantage during competition with Acr-negative phages. This work further helps to explain what defines the strength of an Acr protein, how selection acts on different Acr types in a phage community context, and how this can shape the dynamics of phage populations in natural communities.


Author(s):  
Helen F. Galley ◽  
Heather M. Wilson

The immune system provides protection against invading pathogens, foreign cells including tumour cells, and macromolecules. It comprises an early, non-specific, innate immune response and a later, specific, adaptive immune response that helps prevent disease or recurrence of disease. Innate and adaptive immune systems work together with mutual interactivity distinguishing ‘self’ from ‘non-self components’ to provide effective immune responses and prevent infection. This chapter describes the basic processes involved in immune responses and illustrates the particular relevance for some disease processes as well as highlighting stresses associated with anaesthesia and surgery that can modulate responses.


Author(s):  
Lucie Kratochvílová ◽  
Petr Sláma

This article is an overview of dendritic cells (DCs) in cattle. The understanding of the immune system and the role of DCs in many ways can contribute to their use in the prevention and treatment of many infectious and autoimmune diseases. DCs are bone marrow-derived cells that function as professional antigen presenting cells. They act as messengers between the innate and the adaptive immune systems. The morphology of DCs results in a very large surface to volume ratio. That is, the DCs have a very large surface area compared to the overall cell volume. Currently, most dendritic cells research occurs in the human and mice. There is a lack of studies in cattle describing DCs. DCs survey the body and collect information relevant to the immune system. They are then able to instruct and direct the adaptive arms to respond to challenges.


Author(s):  
Farzad Taghizadeh-Hesary ◽  
Hassan Akbari

On March 11, 2020, the World Health Organization declared the coronavirus outbreak a pandemic. Since December 2019, the world has experienced an outbreak of coronavirus disease 2019 (COVID-19). Epidemiology, risk factors, and clinical characteristics of patients with COVID-19 have been reported but the factors affecting the immune system against COVID-19 have not been well described. In this article, we provide a novel hypothesis to describe how an increase in cellular adenosine triphosphate (c-ATP) can potentially improve the efficiency of innate and adaptive immune systems to either prevent and fight off COVID-19.


Sign in / Sign up

Export Citation Format

Share Document