The human brain: anatomy, evolution, and function

Author(s):  
Martin Brüne

The human brain is the most complex organ that has ever evolved. It contains more neurons and synapses than any other primate brain. In relation to body weight, it is outstandingly large and distinctly convoluted. Several parts of the brain have enlarged disproportionally over evolutionary time. Those brain regions are mainly involved in emotion processing, understanding and reflecting upon one’s own and other minds, memory, social decision-making, and action planning, suggesting that the human brain is adapted to dealing with social matters. The human brain is also conspicuous with regard to its slow maturation, which is linked to the huge amount of social information that needs to be learned until adulthood. Cross-talk among neurons is maintained by the action of neuromodulators and neurotransmitters, many of which are ancient and have served multiple purposes in plants and animals. They help regulate defensive and agonistic behaviour, social attachment, and inhibitory control.

2020 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Smart Ikechukwu Mbagwu ◽  
Luis Filgueira

Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.


2019 ◽  
Author(s):  
Daniel Shaw ◽  
Kristina Czekoova ◽  
Martin Gajdoš ◽  
Rostislav Staněk ◽  
Jiri Spalek ◽  
...  

During social interactions, decision‐making involves mutual reciprocity—each individual's choices are simultaneously a consequence of, and antecedent to those of their interaction partner. Neuroeconomic research has begun to unveil the brain networks underpinning social decision‐making, but we know little about the patterns of neural connectivity within them that give rise to reciprocal choices. To investigate this, the present study measured the behaviour and brain function of pairs of individuals (N = 66) whilst they played multiple rounds of economic exchange comprising an iterated ultimatum game. During these exchanges, both players could attempt to maximise their overall monetary gain by reciprocating their opponent's prior behaviour—they could promote generosity by rewarding it, and/or discourage unfair play through retaliation. By adapting a model of reciprocity from experimental economics, we show that players' choices on each exchange are captured accurately by estimating their expected utility (EU) as a reciprocal reaction to their opponent's prior behaviour. We then demonstrate neural responses that map onto these reciprocal choices in two brain regions implicated in social decision‐making: right anterior insula (AI) and anterior/anterior‐mid cingulate cortex (aMCC). Finally, with behavioural Dynamic Causal Modelling, we identified player‐specific patterns of effective connectivity between these brain regions with which we estimated each player's choices with over 70% accuracy; namely, bidirectional connections between AI and aMCC that are modulated differentially by estimates of EU from our reciprocity model. This input‐state‐output modelling procedure therefore reveals systematic brain–behaviour relationships associated with the reciprocal choices characterising interactive social decision‐making.


2018 ◽  
Vol 40 (2) ◽  
pp. 699-712 ◽  
Author(s):  
Daniel Shaw ◽  
Kristína Czekóová ◽  
Martin Gajdoš ◽  
Rostislav Staněk ◽  
Jiří Špalek ◽  
...  

Author(s):  
Steven E. Hyman ◽  
Doug McConnell

‘Mental illness: the collision of meaning with mechanism’ is based on the views of psychiatry that Steven Hyman articulated in his Loebel Lectures—mental illness results from the disordered functioning of the human brain and effective treatment repairs or mitigates those malfunctions. This view is not intended as reductionist as causes of mental illness and contributions to their repair may come from any source that affects the structure and function of the brain. These might include social interactions and other sources of lived experience, ideas (such as those learned in cognitive therapy), gene sequences and gene regulation, metabolic factors, drugs, electrodes, and so on. This, however, is not the whole story for psychiatry on Hyman’s view; interpersonal interactions between clinicians and patients, intuitively understood in such folk psychological terms as selfhood, intention, and agency are also critical for successful practice. As human beings who are suffering, patients seek to make sense of their lives and benefit from the empathy, respect, and a sense of being understood not only as the objects of a clinical encounter, but also as subjects. Hyman’s argument, however, is that the mechanisms by which human brains function and malfunction to produce the symptoms and impairments of mental illness are opaque to introspection and that the mechanistic understandings necessary for diagnosis and treatment are incommensurate with intuitive (folk psychological) human self-understanding. Thus, psychiatry does best when skillful clinicians switch between an objectifying medical and neurobiological stance and the interpersonal stance in which the clinician engages the patients as a subject. Attempts to integrate these incommensurate views of patients and their predicaments have historically produced incoherent explanations of psychopathology and have often led treatment astray. For example, privileging of folk psychological testimony, even when filtered through sophisticated theories has historically led psychiatry into intellectually blind and clinically ineffective cul-de-sacs such as psychoanalysis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Xueyan Fu ◽  
Will Patterson ◽  
Gregory Dolnikowski ◽  
Bess Dawson-Hughes ◽  
Martha Morris ◽  
...  

Abstract Objectives Very little is known about the forms of vitamin D and vitamin K in the human brain. The objective of this study is to evaluate concentrations of vitamin D and vitamin K forms in human brain and their correlations across four human brain regions. Methods Vitamin D [D3, 25(OH)D and 1,25(OH)2D] and vitamin K [phylloquinone and menaquinone-4 (MK4)] concentrations were measured by LC/MS/MS and HPLC, respectively, in four brain regions from post-mortem samples obtained from participants in the Rush Memory and Aging Project (n = 130, mean age 82 yrs, 81% female). The brain regions analyzed were the mid-frontal cortex (MF) and mid-temporal cortex (MT) [two regions important for memory in Alzheimer's Disease (AD)], the cerebellum (CR, a region not affected by AD), and the anterior watershed white matter (AWS, a region associated with vascular disease). The correlations among the vitamin forms across brain regions were calculated using Spearman rank order correlation coefficients. Significance was set at P < 0.001. Results The average concentrations of vitamin D3, 25(OH)D and MK4 were 604 pg/g, 535 pg/g, and 3.4 pmol/g, respectively. 25(OH)D and MK4 were detected in >95% of the brain samples. Nearly 92% of 1,25(OH)2D and 80% of phylloquinone samples had concentrations below the limit of assay detection (LOD) 1,25(OH)2D = 20 ng/g, phylloquinone = 0.1 pmol/g). Vitamin D3 and 25(OH)D concentrations were positively correlated across all four regions (all Spearman r ≥ 0.78, P < 0.0001). The 1,25(OH)2D was significantly correlated between the MF and CR regions only (Spearman r = 0.30, P < 0.001, all other P ≥ 0.002). MK4 and PK were positively correlated across the four regions studied (MK4 all Spearman r ≥ 0.78, phylloquinone r ≥ 0.49, all P < 0.001). Conclusions To the best of our knowledge, this study is the first evaluation of the concentrations of vitamin D and vitamin K forms in multiple regions of the human brain. Overall, the vitamin D and vitamin K forms were each positively correlated across the four brain regions studied. Future studies are needed to clarify the roles of these nutrients in AD and dementia. Funding Sources National Institute of Aging.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


1998 ◽  
Vol 4 (6) ◽  
pp. 689-690
Author(s):  
Jarl Risberg

Imaging of the structure and function of the human brain has grown to an area with increasing impact on neuropsychological research as well as on the routine clinical evaluation of brain damaged patients. The scientific and popular literature is now flooded by increasingly more spectacular pictures of the brain. The images no longer only illustrate what is well known from earlier research but they do also sometimes provide information of importance for the further development of neuropsychological theories. The two volumes edited by Erin D. Bigler, Neuroimaging I and II, offer a possibility for neuropsychologists and other interested readers to get acquainted with the more recent developments in measurement technology and applications in basic science (Volume I) as well as in the clinic (Volume II). The authors of the 24 chapters are generally outstanding researchers, with impressive expertise within their fields of specialization.


Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5626-5632 ◽  
Author(s):  
Tamar Alon ◽  
Ligang Zhou ◽  
Cristian A. Pérez ◽  
Alastair S. Garfield ◽  
Jeffrey M. Friedman ◽  
...  

Abstract CRH is widely expressed in the brain and is of broad functional relevance to a number of physiological processes, including stress response, parturition, immune response, and ingestive behavior. To delineate further the organization of the central CRH network, we generated mice expressing green fluorescent protein (GFP) under the control of the CRH promoter, using bacterial artificial chromosome technology. Here we validate CRH-GFP transgene expression within specific brain regions and confirm the distribution of central GFP-producing cells to faithfully recapitulate that of CRH-expressing cells. Furthermore, we confirm the functional integrity of a population of GFP-producing cells by demonstrating their apposite responsiveness to nutritional status. We anticipate that this transgenic model will lend itself as a highly tractable tool for the investigation of CRH expression and function in discrete brain regions.


2016 ◽  
Vol 113 (34) ◽  
pp. E5072-E5081 ◽  
Author(s):  
Jason Fischer ◽  
John G. Mikhael ◽  
Joshua B. Tenenbaum ◽  
Nancy Kanwisher

To engage with the world—to understand the scene in front of us, plan actions, and predict what will happen next—we must have an intuitive grasp of the world’s physical structure and dynamics. How do the objects in front of us rest on and support each other, how much force would be required to move them, and how will they behave when they fall, roll, or collide? Despite the centrality of physical inferences in daily life, little is known about the brain mechanisms recruited to interpret the physical structure of a scene and predict how physical events will unfold. Here, in a series of fMRI experiments, we identified a set of cortical regions that are selectively engaged when people watch and predict the unfolding of physical events—a “physics engine” in the brain. These brain regions are selective to physical inferences relative to nonphysical but otherwise highly similar scenes and tasks. However, these regions are not exclusively engaged in physical inferences per se or, indeed, even in scene understanding; they overlap with the domain-general “multiple demand” system, especially the parts of that system involved in action planning and tool use, pointing to a close relationship between the cognitive and neural mechanisms involved in parsing the physical content of a scene and preparing an appropriate action.


2021 ◽  
Author(s):  
Hyeokmoon Kweon ◽  
Gokhan Aydogan ◽  
Alain Dagher ◽  
Danilo Bzdok ◽  
Christian C Ruff ◽  
...  

Recent studies report that socioeconomic status (SES) correlates with brain structure. Yet, such findings are variable and little is known about underlying causes. We present a well-powered voxel-based analysis of grey matter volume (GMV) across levels of SES, finding many small SES effects widely distributed across the brain, including cortical, subcortical and cerebellar regions. We also construct a polygenic index of SES to control for the additive effects of common genetic variation related to SES, which attenuates observed SES-GMV relations, to different degrees in different areas. Remaining variance, which may be attributable to environmental factors, is substantially accounted for by body mass index, a marker for lifestyle related to SES. In sum, SES affects multiple brain regions through measurable genetic and environmental effects.


Sign in / Sign up

Export Citation Format

Share Document