scholarly journals Weak lensing measurements of the APEX-SZ galaxy cluster sample

2019 ◽  
Vol 488 (2) ◽  
pp. 1704-1727 ◽  
Author(s):  
Matthias Klein ◽  
Holger Israel ◽  
Aarti Nagarajan ◽  
Frank Bertoldi ◽  
Florian Pacaud ◽  
...  

ABSTRACT We present a weak lensing analysis for galaxy clusters from the APEX-SZ survey. For 39 massive galaxy clusters that were observed via the Sunyaev–Zel’dovich effect (SZE) with the APEX telescope, we analyse deep optical imaging data from WFI(@2.2mMPG/ESO) and Suprime-Cam(@SUBARU) in three bands. The masses obtained in this study, including an X-ray selected sub-sample of 27 clusters, are optimized for and used in studies constraining the mass to observable scaling relations at fixed cosmology. A novel focus of our weak lensing analysis is the multicolour background selection to suppress effects of cosmic variance on the redshift distribution of source galaxies. We investigate the effects of cluster member contamination through galaxy density, shear profile, and recovered concentrations. We quantify the impact of variance in source redshift distribution on the mass estimate by studying nine sub-fields of the COSMOS survey for different cluster redshift and magnitude limits. We measure a standard deviation of ∼6 per cent on the mean angular diameter distance ratio for a cluster at z = 0.45 and shallow imaging data of R ≈ 23 mag. It falls to ∼1 per cent for deep, R = 26 mag, observations. This corresponds to 8.4 per cent and 1.4 per cent scatter in M200. Our background selection reduces this scatter by 20−40 per cent, depending on cluster redshift and imaging depth. We derived cluster masses with and without using a mass concentration relation and find consistent results, and concentrations consistent with the used mass–concentration relation.

2018 ◽  
Vol 610 ◽  
pp. A85 ◽  
Author(s):  
Tim Schrabback ◽  
Mischa Schirmer ◽  
Remco F. J. van der Burg ◽  
Henk Hoekstra ◽  
Axel Buddendiek ◽  
...  

We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7−020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.′′35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06−0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal.


Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


2007 ◽  
Vol 3 (S244) ◽  
pp. 374-375
Author(s):  
Leila C. Powell ◽  
Scott T. Kay ◽  
Arif Babul ◽  
Andisheh Mahdavi

AbstractVarious differences in galaxy cluster properties derived from X-ray and weak lensing observations have been highlighted in the literature. One such difference is the observation of mass concentrations in lensing maps which have no X-ray counterparts (e.g. Jee, White, Ford et al. 2005). We investigate this issue by identifying substructures in maps of projected total mass (analogous to weak lensing mass reconstructions) and maps of projected X-ray surface brightness for three simulated clusters. We then compare the 2D mass substructures with both 3D subhalo data and the 2D X-ray substructures. Here we present preliminary results from the first comparison, where we have assessed the impact of projecting the data on subhalo identification.


2018 ◽  
Vol 610 ◽  
pp. A71 ◽  
Author(s):  
Sophia Thölken ◽  
Tim Schrabback ◽  
Thomas H. Reiprich ◽  
Lorenzo Lovisari ◽  
Steven W. Allen ◽  
...  

Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims. We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods. We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results. The X-ray luminosity of Cl J120958.9+495352 in the 0.1–2.4 keV band estimated from our XMM-Newton data is LX = (13.4−1.0+1.2) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500 / 1014 M⊙ = 4.4−2.0+2.2(star.) ± 0.6(sys.) and a gas mass fraction of fgas,2500 = 0.11−0.03+0.06 in good agreement with previous findings for high redshift and local clusters.


2007 ◽  
Vol 22 (25n28) ◽  
pp. 2099-2106 ◽  
Author(s):  
KEIICHI UMETSU ◽  
MASAHIRO TAKADA ◽  
TOM BROADHURST

We present results from a weak lensing analysis of the galaxy cluster A1689 (z = 0.183) based on deep wide-field imaging data taken with Suprime-Cam on Subaru telescope. A maximum entropy method has been used to reconstruct directly the projected mass distribution of A1689 from combined lensing distortion and magnification measurements of red background galaxies. The resulting mass distribution is clearly concentrated around the cD galaxy, and mass and light in the cluster are similarly distributed in terms of shape and orientation. The azimuthally-averaged mass profile from the two-dimensional reconstruction is in good agreement with the earlier results from the Subaru one-dimensional analysis of the weak lensing data, supporting the assumption of quasi-circular symmetry in the projected mass distribution of the cluster.


Author(s):  
Ofer M Springer ◽  
Eran O Ofek ◽  
Yair Weiss ◽  
Julian Merten

Abstract Weak lensing shear estimation typically results in per galaxy statistical errors significantly larger than the sought after gravitational signal of only a few percent. These statistical errors are mostly a result of shape-noise — an estimation error due to the diverse (and a-priori unknown) morphology of individual background galaxies. These errors are inversely proportional to the limiting angular resolution at which localized objects, such as galaxy clusters, can be probed with weak lensing shear. In this work we report on our initial attempt to reduce statistical errors in weak lensing shear estimation using a machine learning approach — training a multi-layered convolutional neural network to directly estimate the shear given an observed background galaxy image. We train, calibrate and evaluate the performance and stability of our estimator using simulated galaxy images designed to mimic the distribution of HST observations of lensed background sources in the CLASH galaxy cluster survey. Using the trained estimator, we produce weak lensing shear maps of the cores of 20 galaxy clusters in the CLASH survey, demonstrating an RMS scatter reduced by approximately 26% when compared to maps produced with a commonly used shape estimator. This is equivalent to a survey speed enhancement of approximately 60%. However, given the non-transparent nature of the machine learning approach, this result requires further testing and validation. We provide python code to train and test this estimator on both simulated and real galaxy cluster observations. We also provide updated weak lensing catalogues for the 20 CLASH galaxy clusters studied.


Author(s):  
Elizabeth J Gonzalez ◽  
Martín Makler ◽  
Diego García Lambas ◽  
Martín Chalela ◽  
Maria E S Pereira ◽  
...  

Abstract In this work we study the shape of the projected surface mass density distribution of galaxy clusters using weak-lensing stacking techniques. In particular, we constrain the average aligned component of the projected ellipticity, ε, for a sample of redMaPPer clusters (0.1 ≤ z &lt; 0.4). We consider six different proxies for the cluster orientation and measure ε for three ranges of projected distances from the cluster centres. The mass distribution in the inner region (up to 700 kpc) is better traced by the cluster galaxies with a higher membership probability, while the outer region (from 700 kpc up to 5 Mpc) is better traced by the inclusion of less probable galaxy cluster members. The fitted ellipticity in the inner region is ε = 0.21 ± 0.04, in agreement with previous estimates. We also study the relation between ε and the cluster mean redshift and richness. By splitting the sample in two redshift ranges according to the median redshift, we obtain larger ε values for clusters at higher redshifts, consistent with the expectation from simulations. In addition, we obtain higher ellipticity values in the outer region of clusters at low redshifts. We discuss several systematic effects that might affect the measured lensing ellipticities and their relation to the derived ellipticity of the mass distribution.


2019 ◽  
Vol 488 (2) ◽  
pp. 2523-2542 ◽  
Author(s):  
Hannah Zohren ◽  
Tim Schrabback ◽  
Remco F J van der Burg ◽  
Monique Arnaud ◽  
Jean-Baptiste Melin ◽  
...  

Abstract The Planck satellite has detected cluster candidates via the Sunyaev Zel’dovich (SZ) effect, but the optical follow-up required to confirm these candidates is still incomplete, especially at high redshifts and for SZ detections at low significance. In this work, we present our analysis of optical observations obtained for 32 Planck cluster candidates using ACAM on the 4.2-m William Herschel Telescope. These cluster candidates were pre-selected using SDSS, WISE, and Pan-STARRS images to likely represent distant clusters at redshifts z ≳ 0.7. We obtain photometric redshift and richness estimates for all of the cluster candidates from a red-sequence analysis of r-, i-, and z-band imaging data. In addition, long-slit observations allow us to measure the redshifts of a subset of the clusters spectroscopically. The optical richness is often lower than expected from the inferred SZ mass when compared to scaling relations previously calibrated at low redshifts. This likely indicates the impact of Eddington bias and projection effects or noise-induced detections, especially at low-SZ significance. Thus, optical follow-up not only provides redshift measurements, but also an important independent verification method. We find that 18 (7) of the candidates at redshifts z &gt; 0.5 (z &gt; 0.8) are at least half as rich as expected from scaling relations, thereby clearly confirming these candidates as massive clusters. While the complex selection function of our sample due to our pre-selection hampers its use for cosmological studies, we do provide a validation of massive high-redshift clusters particularly suitable for further astrophysical investigations.


2020 ◽  
Vol 497 (2) ◽  
pp. 1404-1418 ◽  
Author(s):  
S F Raihan ◽  
T Schrabback ◽  
H Hildebrandt ◽  
D Applegate ◽  
G Mahler

ABSTRACT Accurate weak lensing mass estimates of clusters are needed to calibrate mass proxies for the cosmological exploitation of galaxy cluster surveys. Such measurements require accurate knowledge of the redshift distribution of the weak lensing source galaxies. In this context, we investigate the accuracy of photometric redshifts (photo-zs) computed by the 3D-Hubble Space Telescope(HST) team for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields, which provide a relevant photometric reference data set for deep weak lensing studies. Through the comparison to spectroscopic redshifts and photo-zs based on very deep data from the Hubble Ultra Deep Field, we identify catastrophic redshift outliers in the 3D-HST/CANDELS catalogue. These would significantly bias weak lensing results if not accounted for. We investigate the cause of these outliers and demonstrate that the interpolation of spectral energy distribution templates and a well-selected combination of photometric data can reduce the net impact for weak lensing studies.


Sign in / Sign up

Export Citation Format

Share Document