scholarly journals Effect of sphingosine-1-phosphate on activation of dormant follicles in murine and human ovarian tissue

2020 ◽  
Vol 26 (5) ◽  
pp. 301-311 ◽  
Author(s):  
Susanne Elisabeth Pors ◽  
Lilja Harðardóttir ◽  
Hanna Ørnes Olesen ◽  
Malene Lundgaard Riis ◽  
Lea Bejstrup Jensen ◽  
...  

Abstract In vitro activation of resting ovarian follicles, with the use of mechanical stress and/or pharmacological compounds, is an emerging and novel approach for infertility treatment. The aim of this study was to assess the sphingolipid, sphingosine-1-phosphate (S1P), as a potential in vitro activation agent in murine and human ovarian tissues and isolated follicles. Juvenile murine ovaries and donated human ovarian tissues, from 10 women undergoing ovarian tissue cryopreservation for fertility preservation, were incubated with or without 12 μM S1P for 3 h for quantitative PCR analysis, and 12 h for xenotransplantation or culture studies. Gene expression analyses were performed for genes downstream of the Hippo signaling pathway. Murine ovaries and isolated murine and human preantral follicles showed significantly increased mRNA expression levels of Ccn2/CCN2 following S1P treatment compared to controls. This increase was shown to be specific for the Hippo signaling pathway and for the S1P2 receptor, as co-treatment with Hippo-inhibitor, verteporfin and S1PR2 antagonist, JTE-013, reduced the S1P-induced Ccn2 gene expression in murine ovaries. Histological evaluation of human cortical tissues (5 × 5 × 1 mm; n = 30; three pieces per patient) xenografted for 6 weeks and juvenile murine ovaries cultured for 4 days (n = 9) or allografted for 2 weeks (n = 48) showed no differences in the distribution of resting or growing follicles in S1P-treated ovarian tissues compared to controls. Collectively, S1P increased Ccn2/CCN2 gene expression in isolated preantral follicles and ovarian tissue from mice and human, but it did not promote follicle activation or growth in vivo. Thus, S1P does not appear to be a potent in vitro activation agent under these experimental conditions.

Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2021 ◽  
Author(s):  
Maonan Wang ◽  
Manli Dai ◽  
Dan Wang ◽  
Ting Tang ◽  
Fang Xiong ◽  
...  

Abstract BackgroundLong noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown.MethodsWe used the microarray data to identify differentially expressed lncRNAs between breast cancer and adjacent breast epithelial tissues. In vitro and in vivo assays were used to explore the biological effects of the differentially expressed lncRNA Apoptosis-Associated Transcript in Bladder Cancer (AATBC) in breast cancer cells. The mass spectrometry and RNA pulldown were used to screen AATBC interacting proteins. Using the Kaplan-Meier method, survival analysis was performed.ResultsThe expression of AATBC was significantly high in breast cancer samples, and this high AATBC level was tightly correlated with poor prognosis in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer cells migration and invasion. AATBC specifically interacted with Y-box binding protein 1 (YBX1), which activated the YAP1/Hippo signaling pathway by binding to macrophage stimulating 1 (MST1) and promoting the nuclear translocation of Yes associated protein 1 (YAP1), allowing its function as a nuclear transcriptional regulator. ConclusionsAATBC is highly expressed in breast cancer and contributes to patients’ progression, indicating that it could serve as a novel prognostic marker for the disease. Mechanistically, AATBC affects migration and invasion of breast cancer cells through an AATBC-YBX1-MST1 axis, resulting in activating the YAP1/Hippo signaling pathway. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of “AATBC-YAP1” may bring a new dawn to the treatment of breast cancer.


2015 ◽  
Vol 35 (3) ◽  
pp. 957-968 ◽  
Author(s):  
Cheng Xiang ◽  
Jia Li ◽  
Liaoliao Hu ◽  
Jian Huang ◽  
Tao Luo ◽  
...  

Background: The Hippo signaling pathway, a highly conserved cell signaling system, exists in most multicellular organisms and regulates cell proliferation, differentiation, and apoptosis. It has been reported that the members of Hippo signaling are expressed in mammalian ovaries, but the exact functions of this pathway in primordial follicle development remains unclear. Methods: To analyze the spatio-temporal correlation between the core component of Hippo pathway and the size of primordial follicle pool, Western blot, Real-time PCR and immunohistochemistry were used, and the expression and localization of MST1, LATS2 and YAP1 mRNA and protein were examined in 3 d, 1 m, 5 m, 16 m postnatal mice ovary and the culture model of mice primordial follicle in vitro. Results: Both the protein and mRNA expression of the MST1 and LATS2 were decreased significantly as mouse age increased (p < 0.05), however, the mRNA expression of them increased significantly in 16 m compared with 5 m as well as the protein expression of LATS2.The expression of YAP showed the opposite trend, and the significant protein expression of pYAP was increased before 1 m, after which no significant change was observed. Moreover, the ratio of pYAP/YAP decreased significantly. Culturing ovaries for 8 d in vitro resulted in the activation of primordial follicles in 3 d postnatal mice ovaries, and these developed into primary follicles with the expression of PCNA increasing significantly (p < 0.05). The mRNA and protein expression of MST and LATS decreased significantly (p < 0.05), and the expression of YAP increased significantly (p < 0.05, p < 0.01), whereas the ratio of pYAP/YAP decreased significantly (p < 0.05). Conclusion: The above results reveal that the expression of the core components of Hippo pathway changed during mouse follicular development, especially before and after primordial follicle activation in vitro. The primordial follicle activation may be related to the significant decrease of the ratio of pYAP1/YAP1. In conclusion, Hippo signaling pathway expressed in mice ovaries and have spatio-temporal correlation with the size of primordial follicle pool.


2019 ◽  
Vol 101 (5) ◽  
pp. 1001-1017 ◽  
Author(s):  
Michele R Plewes ◽  
Xiaoying Hou ◽  
Pan Zhang ◽  
Aixin Liang ◽  
Guohua Hua ◽  
...  

Abstract Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.


Author(s):  
Renata P. Sousa ◽  
Ana Beatriz G. Duarte ◽  
Yago Pinto ◽  
Naiza A. R. Sá ◽  
Benner G. Alves ◽  
...  

2014 ◽  
Vol 307 (2) ◽  
pp. G196-G204 ◽  
Author(s):  
James L. Grijalva ◽  
Megan Huizenga ◽  
Kaly Mueller ◽  
Steven Rodriguez ◽  
Joseph Brazzo ◽  
...  

The Hippo signaling pathway has been implicated in mammalian organ size regulation and tumor suppression. Specifically, the Hippo pathway plays a critical role regulating the activity of transcriptional coactivator Yes-associated protein (YAP), which modulates a proliferative transcriptional program. Recent investigations have demonstrated that while this pathway is activated in quiescent livers, its inhibition leads to liver overgrowth and tumorigenesis. However, the role of the Hippo pathway during the natural process of liver regeneration remains unknown. Here we investigated alterations in the Hippo signaling pathway and YAP activation during liver regeneration using a 70% partial hepatectomy (PH) rat model. Our results indicate an increase in YAP activation by 1 day following PH as demonstrated by increased YAP nuclear localization and increased YAP target gene expression. Investigation of the Hippo pathway revealed a decrease in the activation of core kinases Mst1/2 by 1 day as well as Lats1/2 and its adapter protein Mob1 by 3 days following PH. Evaluation of liver-to-body weight ratios indicated that the liver reaches its near normal size by 7 days following PH, which correlated with a return to baseline YAP nuclear levels and target gene expression. Additionally, when liver size was restored, Mst1/2 kinase activation returned to levels observed in quiescent livers indicating reactivation of the Hippo signaling pathway. These findings illustrate the dynamic changes in the Hippo signaling pathway and YAP activation during liver regeneration, which stabilize when the liver-to-body weight ratio reaches homeostatic levels.


2020 ◽  
Author(s):  
Dong Zhao ◽  
Tao Zhou ◽  
Yi Luo ◽  
Chenchen Wang ◽  
Dongwei Xu ◽  
...  

Abstract BackgroundEpidemiological studies have shown direct associations between type 2 diabetes and the risk of cancers. Accumulating evidence indicates that metformin is profoundly implicated in preventing tumor development. However, the exact mechanism underlying the anti-tumor effects of metformin in hepatocellular carcinoma (HCC) is still not clear. MethodsIn this study, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and interleukin-22 (IL-22)-associated carcinogenesis in vitro.ResultsWe found that metformin significantly suppressed the incidence and tumor burden of HCC in the diethyl-nitrosamine (DEN)-induced HCC mouse model. As expected, expression of IL-22, an important factor involved in HCC progression, was markedly reduced by metformin. Treatment of HCC cells with metformin inhibited IL-22 induced cell proliferation, migration and invasion, and promoted cell apoptosis. Furthermore, ectopic expression of IL-22 makes HCC more aggressive whereas metformin largely compromised it in vitro and in vivo. Mechanistically, the whole transcriptome analysis and functional analysis revealed that Hippo signaling pathway was involved in the anti-tumor ability of metformin. Consistent with this, metformin directly activated Mst1/2, phosphorylated YAP1 in vitro. After blocking Hippo pathway by XMU-MP-1, the inhibitor of MST1/2, the inhibitory effects by metformin were dramatically attenuated as shown by in vitro study.ConclusionsCollectively, our findings illuminate a new regulatory mechanism, metformin activates Hippo signaling pathway to regulate IL-22 mediated HCC progression and provide new insights into its tumor-suppressive roles.


Oncogene ◽  
2020 ◽  
Vol 39 (38) ◽  
pp. 6099-6112
Author(s):  
Dehai Wu ◽  
Yan Wang ◽  
Guangchao Yang ◽  
Shugeng Zhang ◽  
Yao Liu ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality in the United States. Exploring the mechanism of HCC and identifying ideal targets is critical. In the present study, we demonstrated metabolism dysfunction might be a key diver for the development of HCC. The mitochondrial amidoxime reducing component 2 (MARC2) as a newly discovered molybdenum enzyme was downregulated in human HCC tissues and HCC cells. Downregulated MARC2 was significantly associated with clinicopathological characteristics of HCC, such as tumor size, AFP levels, and tumor grade and was an independent risk factor of poor prognosis. Both in vitro and in vivo studies suggested that MARC2 suppressed the progression of HCC by regulating the protein expression level of p27. The Hippo signaling pathway and RNF123 were required for this process. Moreover, MARC2 regulated expression of HNF4A via the Hippo signaling pathway. HNF4A was recruited to the promoter of MARC2 forming a feedback loop. MARC2 levels were downregulated by methylation. We demonstrated the prognostic value of MARC2 in HCC and determined the mechanism by which MARC2 suppressed the progression of HCC in this study. These findings may lead to new therapeutic targets for HCC.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1630 ◽  
Author(s):  
Kirsten Strømme Kierulf-Vieira ◽  
Cecilie Jonsgar Sandberg ◽  
Jo Waaler ◽  
Kaja Lund ◽  
Erlend Skaga ◽  
...  

Evidence suggests that the growth and therapeutic resistance of glioblastoma (GBM) may be enabled by a population of glioma stem cells (GSCs) that are regulated by typical stem cell pathways, including the WNT/β-catenin signaling pathway. We wanted to explore the effect of treating GSCs with a small-molecule inhibitor of tankyrase, G007-LK, which has been shown to be a potent modulator of the WNT/β-catenin and Hippo pathways in colon cancer. Four primary GSC cultures and two primary adult neural stem cell cultures were treated with G007-LK and subsequently evaluated through the measurement of growth characteristics, as well as the expression of WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Treatment with G007-LK decreased in vitro proliferation and sphere formation in all four primary GSC cultures in a dose-dependent manner. G007-LK treatment altered the expression of key downstream WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Finally, cotreatment with the established GBM chemotherapeutic compound temozolomide (TMZ) led to an additive reduction in sphere formation, suggesting that WNT/β-catenin signaling may contribute to TMZ resistance. These observations suggest that tankyrase inhibition may serve as a supplement to current GBM therapy, although more work is needed to determine the exact downstream mechanisms involved.


Sign in / Sign up

Export Citation Format

Share Document