scholarly journals Mechanism of forkhead transcription factors binding to a novel palindromic DNA site

2021 ◽  
Author(s):  
Jun Li ◽  
Shuyan Dai ◽  
Xiaojuan Chen ◽  
Xujun Liang ◽  
Lingzhi Qu ◽  
...  

Abstract Forkhead transcription factors bind a canonical consensus DNA motif, RYAAAYA (R = A/G, Y = C/T), as a monomer. However, the molecular mechanisms by which forkhead transcription factors bind DNA as a dimer are not well understood. In this study, we show that FOXO1 recognizes a palindromic DNA element DIV2, and mediates transcriptional regulation. The crystal structure of FOXO1/DIV2 reveals that the FOXO1 DNA binding domain (DBD) binds the DIV2 site as a homodimer. The wing1 region of FOXO1 mediates the dimerization, which enhances FOXO1 DNA binding affinity and complex stability. Further biochemical assays show that FOXO3, FOXM1 and FOXI1 also bind the DIV2 site as homodimer, while FOXC2 can only bind this site as a monomer. Our structural, biochemical and bioinformatics analyses not only provide a novel mechanism by which FOXO1 binds DNA as a homodimer, but also shed light on the target selection of forkhead transcription factors.

2003 ◽  
Vol 31 (1) ◽  
pp. 292-297 ◽  
Author(s):  
K.U. Birkenkamp ◽  
P.J. Coffer

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting in nuclear export and inhibition of transcription. This signalling pathway was first identified in the nematode worm Caenorhabditis elegans, where it has a role in regulation of the life span of the organism. Studies have shown that this evolutionarily conserved signalling module has a role in regulation of both cell-cycle progression and cell survival in higher eukaryotes. These effects are co-ordinated by FOXO-mediated induction of a variety of specific target genes that are only now beginning to be identified. Interestingly, FOXO transcription factors appear to be able to regulate transcription through both DNA-binding-dependent and -independent mechanisms. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions to divide, differentiate or die.


2019 ◽  
Vol 47 (19) ◽  
pp. 9967-9989 ◽  
Author(s):  
Maria Carmen Mulero ◽  
Vivien Ya-Fan Wang ◽  
Tom Huxford ◽  
Gourisankar Ghosh

Abstract The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5′-GGGRNNNYCC-3′ (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.


2013 ◽  
Vol 110 (30) ◽  
pp. 12349-12354 ◽  
Author(s):  
S. Nakagawa ◽  
S. S. Gisselbrecht ◽  
J. M. Rogers ◽  
D. L. Hartl ◽  
M. L. Bulyk

2002 ◽  
Vol 1 (5) ◽  
pp. 787-798 ◽  
Author(s):  
Eric S. Bensen ◽  
Scott G. Filler ◽  
Judith Berman

ABSTRACT Candida albicans is an important pathogen of immunocompromised patients which grows with true hyphal, pseudohyphal, and yeast morphologies. The dynamics of cell cycle progression are markedly different in true hyphal relative to pseudohyphal and yeast cells, including nuclear movement and septin ring positioning. In Saccharomyces cerevisiae, two forkhead transcription factors (ScFKH1 and ScFKH2) regulate the expression of B-cyclin genes. In both S. cerevisiae and Schizosaccharomyces pombe, forkhead transcription factors also influence morphogenesis. To explore the molecular mechanisms that connect C. albicans morphogenesis with cell cycle progression, we analyzed CaFKH2, the single homolog of S. cerevisiae FKH1/FKH2. C. albicans cells lacking CaFkh2p formed constitutive pseudohyphae under all yeast and hyphal growth conditions tested. Under hyphal growth conditions levels of hyphae-specific mRNAs were reduced, and under yeast growth conditions levels of several genes encoding proteins likely to be important for cell wall separation were reduced. Together these results imply that Fkh2p is required for the morphogenesis of true hyphal as well as yeast cells. Efg1p and Cph1p, two transcription factors that contribute to C. albicans hyphal growth, were not required for the pseudohyphal morphology of fkh2 mutants, implying that Fkh2p acts in pathways downstream of and/or parallel to Efg1p and Cph1p. In addition, cells lacking Fkh2p were unable to damage human epithelial or endothelial cells in vitro, suggesting that Fkh2p contributes to C. albicans virulence.


2021 ◽  
Vol 22 (22) ◽  
pp. 12426
Author(s):  
Christelle Gross ◽  
Gaëtan Le-Bel ◽  
Pascale Desjardins ◽  
Manel Benhassine ◽  
Lucie Germain ◽  
...  

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
Author(s):  
William Richardson ◽  
Gyun Won Kang ◽  
Hee Joong Lee ◽  
Kang Mu Kwon ◽  
Saron Kim ◽  
...  

Transcription factors are the primary regulators of gene expression and recognize specific DNA sequences under diverse physiological conditions. Although they are vital for many important cellular processes, it remains unclear when and how transcription factors and DNA interact. The antitoxin from a toxin–antitoxin system is an example of negative transcriptional autoregulation: during expression of the cognate toxin it is suppressed through binding to a specific DNA sequence. In the present study, the antitoxin HigA2 from Mycobacterium tuberculosis M37Rv was structurally examined. The crystal structure of M. tuberculosis HigA2 comprises three sections: an N-terminal autocleavage region, an α-helix bundle which contains an HTH motif, and a C-terminal β-lid. The N-terminal region is responsible for toxin binding, but was shown to cleave spontaneously in its absence. The HTH motif performs a key role in DNA binding, with the C-terminal β-lid influencing the interaction by mediating the distance between the motifs. However, M. tuberculosis HigA2 exhibits a unique coordination of the HTH motif and no DNA-binding activity is detected. Three crystal structures of M. tuberculosis HigA2 show a flexible alignment of the HTH motif, which implies that the motif undergoes structural rearrangement to interact with DNA. This study reveals the molecular mechanisms of how transcription factors interact with partner proteins or DNA.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3599-3606 ◽  
Author(s):  
Sang-Myeong Lee ◽  
Beixue Gao ◽  
Deyu Fang

Abstract Regulatory T cells (Tregs) have been shown to play a crucial role in maintaining self-tolerance and suppressing autoimmunity. The forkhead transcription factor, FoxP3, is a key molecule necessary and sufficient for Tregs development and function. However, the molecular mechanisms by which FoxP3 regulates the phenotypic (anergic) and the functional (suppressive) characteristics of Tregs are not well defined. Here we found that the promoter DNA-binding activity of AP-1 transcription factors is selectively inhibited in the naturally occurring CD4+ CD25+ Tregs from mice. The impaired AP-1 DNA binding is not the result of the decreased nuclear translocation of AP-1 family transcription factors, including c-Jun, JunB, and c-Fos. FoxP3 significantly suppresses both the transcriptional activity and promoter DNA-binding of AP-1 by interacting with c-Jun. The N-terminus of FoxP3, but not its C-terminus forkhead domain, specifically interacts with phosphorylated c-Jun and alters c-Jun subnuclear distribution. This N-terminus of FoxP3 with nuclear localization signals (FoxP3N/NLS) is able to suppress AP-1 transcriptional activity. Ectopic expression of FoxP3N/NLS sufficiently induces the unresponsiveness of mouse primary CD4+ CD25− T cells, whereas the full-length FoxP3 is required for the suppressive functions of Tregs. These findings uncover one of the mechanisms underlying how FoxP3 maintains the unresponsiveness of Tregs.


Sign in / Sign up

Export Citation Format

Share Document