scholarly journals Alkaloid Biosynthesis in the Early Stages of the Germination of Argemone mexicana L. (Papaveraceae)

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2226
Author(s):  
Jorge Xool-Tamayo ◽  
Yahaira Tamayo-Ordoñez ◽  
Miriam Monforte-González ◽  
José Armando Muñoz-Sánchez ◽  
Felipe Vázquez-Flota

The synthesis of the benzylisoquinoline alkaloids, sanguinarine and berberine, was monitored in Argemone mexicana L. (Papaveracea) throughout the early stages of its hypocotyl and seedling development. Sanguinarine was detected in the cotyledons right after hypocotyl emergence, and it increased continuously until the apical hook unbent, prior to the cotyledonary leaves unfolding, when it abruptly fell. In the cotyledonary leaves, it also remained at low levels. Throughout development, berberine accumulation required the formation of cotyledonary leaves, whereas it was quickly detected in the hypocotyl from the time it emerged. Interestingly, the alkaloids detected in the cotyledons could have been imported from hypocotyls, because no transcriptional activity was detected in there. However, after turning into cotyledonary leaves, important levels of gene expression were noted. Taken together, these results suggest that the patterns of alkaloid tissue distribution are established from very early development, and might require transport systems.

2018 ◽  
Vol 41 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Felipe Vázquez-Flota ◽  
Jorge Rubio-Piña ◽  
Jorge Xool-Tamayo ◽  
Mariela Vergara-Olivares ◽  
Yahaira Tamayo-Ordoñez ◽  
...  

The distribution of berberine and sanguinarine was analyzed in roots, stems and leaves of mature Argemone mexicana plants, along with that of transcripts corresponding to selected genes involved in both early biosynthetic reactions, which are common to both alkaloids, and in the late specific reactions conducting to the formation of each of them. Roots were the main sites of alkaloid accumulation, though they showed the lowest accumulation of the analyzed transcripts. Results are discussed in terms of the operation of a possible transport mechanism of alkaloids between the aerial tissues and the roots, or the occurrence of different biosynthetic alternative reactions in both parts, aerial and underground tissues, involving different gene products, yet with similar catalytic capacities.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 651-667
Author(s):  
Douglas P Dickinson ◽  
Kenneth W Gross ◽  
Nina Piccini ◽  
Carol M Wilson

ABSTRACT Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75-5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Stéphane Deschamps ◽  
John A. Crow ◽  
Nadia Chaidir ◽  
Brooke Peterson-Burch ◽  
Sunil Kumar ◽  
...  

Abstract Background Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. Results Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. Conclusions Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


2001 ◽  
Vol 357 (1) ◽  
pp. 249 ◽  
Author(s):  
Andrés C. GARCÍA-MONTERO ◽  
Sophie VASSEUR ◽  
Luciana E. GIONO ◽  
Eduardo CANEPA ◽  
Silvia MORENO ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthieu Dos Santos ◽  
Stéphanie Backer ◽  
Benjamin Saintpierre ◽  
Brigitte Izac ◽  
Muriel Andrieu ◽  
...  

Abstract Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.


1999 ◽  
Vol 19 (1) ◽  
pp. 899-908 ◽  
Author(s):  
Perry Kannan ◽  
Michael A. Tainsky

ABSTRACT ras oncogene-transformed PA-1 human teratocarcinoma cells have abundant AP-2 mRNA but, paradoxically, little AP-2 transcriptional activity. We have previously shown that overexpression of AP-2 in nontumorigenic variants of PA-1 cells results in inhibition of AP-2 activity and induction of tumorigenicity similar to that caused by ras transformation of PA-1 cells. Evidence indicated the existence of a novel mechanism of inhibition of AP-2 activity involving sequestering of transcriptional coactivators. In this study, we found that PC4 is a positive coactivator of AP-2 and can restore AP-2 activity in ras-transformed PA-1 cells. Relative to vector-transfected ras cell lines,ras cell lines stably transfected with and expressing the PC4 cDNA have a diminished growth rate and exhibit a loss of anchorage-independent growth, and they are unable to induce the formation of tumors in nude mice. These data suggest that a transcriptional coactivator, like a tumor suppressor, can have a growth-suppressive effect on cells. Our experiments are the first to show that ras oncogenes and oncogenic transcription factors can induce transformation through effects on the transcription machinery rather than through specific programs of gene expression.


2008 ◽  
Vol 121 (13) ◽  
pp. 2224-2234 ◽  
Author(s):  
G. Solanas ◽  
M. Porta-de-la-Riva ◽  
C. Agusti ◽  
D. Casagolda ◽  
F. Sanchez-Aguilera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document