P13.10 Chemoattraction of glioma cells in a local hydrogel trap and immune control associated with improved survival and cognitive functions in a mouse model of glioblastoma resection

2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii34-ii34
Author(s):  
H Castel ◽  
E Laillet De Montulle ◽  
M Dubois ◽  
F Ferracci ◽  
A Mutel ◽  
...  

Abstract BACKGROUND Glioblastoma (GB) is the most aggressive brain primary tumor. The prognosis remains poor mainly due to the invasiveness of glioma cells, radio and/or chemoresistance and GB-induced immunosuppressive environment. Here, we propose to use a local delivery system based on a biocompatible hydrogel containing the chemopeptide urotensin II (hUII) or a biased synthetic analog DAB8-hUII, to “trap” GB cells, and/or to control immune cells expressing its G protein-coupled receptor UT, leading to tumor regression and neurological benefit, in a mouse model of GB resection. MATERIAL AND METHODS In vitro, invasion towards UII/analog across different hydrogels or glue of human or murine GB-GFP cell lines was evaluated in Boyden chamber and cloning ring assays. In vivo GB cells were intrastriatally xenografted, then resected while hydrogel- or glue-containing UII/analog was injected in the cavity resection. Behavioral tests, brain immunohistochemical analyses and mouse survival were then investigated. RESULTS In vitro, invasive capacity of human U87 and 42MG or murine GL261 and CT2A GB cells was stimulated by UII loaded into hydrogel-based hyaluronic acid supplemented with collagen or other chemicals, PNIPAAm-PEG, or thrombin-fibrin glue. In vivo, injection of UII- or DAB8-hUII-loaded glue into the cavity resection of GL261 and CT2A GB in C57BL/6 mice significantly improved survival compared with tumor and resected experimental conditions. Neurological status was also tested before and after GB resection. We found that GL261 and CT2A cell-bearing mice expressed altered spontaneous activity, emotion and cognitive functions. Intracavity injection of the glue improved resignation and anxiety and increased motor activity and cognition with a best cognitive recovery with hUII and DAB-8-hUII-loaded glue groups. Ex vivo brain analyses revealed high expression of UT and UII in some GB GFP-positive cells and macrophages within GB core and at the interface with the normal brain, GB cells expressing UT migrating along tortuous podocalyxin+ vascular components. In brains bearing hydrogel/hUII glue, vascularization appears modified and GFAP+ astrocytes and F4/80+ macrophages were highly recruited in the border of the cavity, compared with the other conditions. CONCLUSION A local glue containing UII may trap GB cells and remodel the tumor microenvironment responsible for survival and cognitive improvements, providing new option in the therapeutic arsenal of GB.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


2018 ◽  
Vol 129 (6) ◽  
pp. 1446-1455 ◽  
Author(s):  
Markus M. Luedi ◽  
Sanjay K. Singh ◽  
Jennifer C. Mosley ◽  
Islam S. A. Hassan ◽  
Masumeh Hatami ◽  
...  

OBJECTIVEDexamethasone, a known regulator of mesenchymal programming in glioblastoma (GBM), is routinely used to manage edema in GBM patients. Dexamethasone also activates the expression of genes, such as CEBPB, in GBM stem cells (GSCs). However, the drug’s impact on invasion, proliferation, and angiogenesis in GBM remains unclear. To determine whether dexamethasone induces invasion, proliferation, and angiogenesis in GBM, the authors investigated the drug’s impact in vitro, in vivo, and in clinical information derived from The Cancer Genome Atlas (TCGA) cohort.METHODSExpression profiles of patients from the TCGA cohort with mesenchymal GBM (n = 155) were compared with patients with proneural GBM by comparative marker selection. To obtain robust data, GSCs with IDH1 wild-type (GSC3) and with IDH1 mutant (GSC6) status were exposed to dexamethasone in vitro and in vivo and analyzed for invasion (Boyden chamber, human-specific nucleolin), proliferation (Ki-67), and angiogenesis (CD31). Ex vivo tumor cells from dexamethasone-treated and control mice were isolated by fluorescence activated cell sorting and profiled using Affymetrix chips for mRNA (HTA 2.0) and microRNAs (miRNA 4.0). A pathway analysis was performed to identify a dexamethasone-regulated gene signature, and its relationship with overall survival (OS) was assessed using Kaplan-Meier analysis in the entire GBM TCGA cohort (n = 520).RESULTSThe mesenchymal subgroup, when compared with the proneural subgroup, had significant upregulation of a dexamethasone-regulated gene network, as well as canonical pathways of proliferation, invasion, and angiogenesis. Dexamethasone-treated GSC3 demonstrated a significant increase in invasion, both in vitro and in vivo, whereas GSC6 demonstrated a modest increase. Furthermore, dexamethasone treatment of both GSC3 and GSC6 lines resulted in significantly elevated cell proliferation and angiogenesis in vivo. Patients with mesenchymal GBM had significant upregulation of dexamethasone-regulated pathways when compared with patients with proneural GBM. A prognostic (p = 0.0007) 33-gene signature was derived from the ex vivo expression profile analyses and used to dichotomize the entire TCGA cohort by high (median OS 12.65 months) or low (median OS 14.91 months) dexamethasone signature.CONCLUSIONSThe authors present evidence that furthers the understanding of the complex effects of dexamethasone on biological characteristics of GBM. The results suggest that the drug increases invasion, proliferation, and angiogenesis in human GSC-derived orthotopic tumors, potentially worsening GBM patients’ prognoses. The authors believe that careful investigation is needed to determine how to minimize these deleterious dexamethasone-associated side effects in GBM.


2021 ◽  
Vol 22 (24) ◽  
pp. 13350
Author(s):  
Maxim O. Politko ◽  
Alexandra Y. Tsidulko ◽  
Oxana A. Pashkovskaya ◽  
Konstantin E. Kuper ◽  
Anastasia V. Suhovskih ◽  
...  

Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3835-3835 ◽  
Author(s):  
Michael Fitzgerald ◽  
Yueying Cao ◽  
Bret Bannerman ◽  
Zhi Li ◽  
Olga Tayber ◽  
...  

Abstract Abstract 3835 Poster Board III-771 Introduction The first generation proteasome inhibitor VELCADE® (bortezomib) is indicated for the treatment of patients with multiple myeloma (MM), a form of plasma cell malignancy (PCM). MLN9708 is our novel proteasome inhibitor that selectively and reversibly binds to, and potently inhibits the b5 site of the 20s proteasome in preclinical studies. We have recently demonstrated that MLN9708 significantly prolongs tumor-free survival of double transgenic iMycCa/Bcl-XL mice, a genetically-engineered mouse model of de novo PCM. Here we describe the in vivo evaluation of cell lines derived from double transgenic iMycCa/Bcl-XL mice and the antitumor activity of MLN9708 in a disseminated mouse model of iMycCa/Bcl-XL PCM. Materials MLN9708 immediately hydrolyzes to MLN2238, the biologically active form, upon exposure to aqueous solutions or plasma. MLN2238 was used for all preclinical studies described below. Double transgenic iMycCa/Bcl-XL mice develop de novo PCM, in which neoplastic plasma cell development is driven by the targeted expression of the oncoprotein Myc and anti-apoptotic Bcl-XL (J. Clin. Invest. 113:1763-1773, 2004). DP54 and DP42 are plasma cell tumor cell lines isolated from the bone marrow and lymph nodes, respectively, of syngeneic mice previously inoculated with iMycCa/Bcl-XL tumors (Cancer Res. 67:4069-4078, 2007). In vitro, DP54 and DP42 cells express both the Myc and Bcl-XL transgenes, various plasma cell and B-cell markers including CD38, CD138 and B220, and have gene expression profiles very similar to human MM. Methods Cell viability studies were performed to determine the antiproliferative effects of MLN2238 in DP54 and DP42 cells in vitro. To evaluate DP54 and DP42 cells in vivo, these cells were aseptically inoculated into the tail vein of NOD-SCID mice. Progressions of the resultant PCM were monitored and tumor burdens were evaluated by magnetic resonance imaging (MRI), ex vivo mCT imaging, and histopathology. Mouse plasma samples were collected at the end of the studies and levels of immunoglobulin were assessed. To establish a preclinical disseminated mouse model of iMycCa/Bcl-XL PCM, freshly dissociated DP54-Luc cells (constitutively expressing firefly luciferase under a mouse Ig-k promoter) were aseptically inoculated into the tail vein of NOD-SCID mice. Once tumor growth has been established, mice were randomized into treatment groups and then treated with vehicle, bortezomib (at 0.7mg/kg intravenously [IV] twice weekly [BIW]) or MLN2238 (at 11 mg/kg IV BIW) for 3 consecutive weeks. Tumor burden was measured by bioluminescent imaging. Results In vitro, both DP54 and DP42 cells were sensitive to MLN2238 treatment (LD50 values of 14 and 25 nM, respectively). In vivo, NOD-SCID mice rapidly succumbed to PCM after being inoculated with DP54 and DP42 cells (25 and 14 days post-inoculation, respectively), where the disease was accompanied by marked elevation of plasma immunoglobulins. MRI scans revealed the presence of multiple lesions and several abnormalities were found including: cranial deformation, bowel distortion, splenomegaly and renal edema. Tumor infiltrates, ranging from minor to extensive, were identified in multiple organ compartments (brain<kidney<liver<lymph nodes<spleen<bone marrow) by histopathological analysis. Ex vivo mCT imaging has also revealed signs of bone erosion in the cranial sagittal sutures. Dissemination of DP54-Luc cells after tail vein inoculations was detected by in vivo bioluminescent and confirmed by ex vivo imaging where luminescent tumor nodules were identified in the spleen, kidneys, liver, intestine, lymph nodes, spinal bone and cranium. To assess the antitumor activity of MLN2238, an efficacy study was performed using the DP54-Luc disseminated model. Tumor burden (bioluminescence), skeletal malformation (mCT) and overall survival after treatment with bortezomib and MLN2238 will be presented. Conclusion The DP54-Luc disseminated mouse model of double transgenic iMycCa/Bcl-XL PCM recapitulated several key features of human MM and provided real-time assessment of novel MM therapy preclinically. MLN9708 is currently in human clinical development for both hematological and solid tumor indications. Disclosures: Cao: Milllennium: Employment, Equity Ownership. Bannerman:Milllennium: Employment. Li:Milllennium: Employment. Bradley:Milllennium: Employment, Equity Ownership, Research Funding. Silverman:Milllennium: Employment. Janz:Milllennium: Research Funding. Van Ness:Milllennium: Research Funding. Kupperman:Milllennium: Employment. Manfredi:Milllennium: Employment. Lee:Milllennium: Employment, Equity Ownership.


2018 ◽  
Vol 51 (6) ◽  
pp. 2496-2508 ◽  
Author(s):  
Danfeng Zhang ◽  
Dawei Dai ◽  
Mengxia Zhou ◽  
Zhenxing Li ◽  
Chunhui Wang ◽  
...  

Background/Aims: Cyclin D1 (CCND1) is frequently overexpressed in malignant gliomas. We have previously shown ectopic overexpression of CCND1 in human malignant gliomas cell lines. Methods: Quantitative reverse transcriptase PCR (qRT-PCR) and Western Blot (WB) was performed to investigate the expression of CCND1 in glioma tissues and cell lines. The biological function of CCND1 was also investigated through knockdown and overexpression of BCYRN1 in vitro. Results: Here we reported that CCND1 expression was positively associated with the pathological grade and proliferative activity of astrocytomas, as the lowest expression was found in normal brain tissue (N = 3) whereas the highest expression was in high-grade glioma tissue (N = 25). Additionally, we found that the expression level of CCND1 was associated with IC50 values in malignant glioma cell lines. Forced inhibition of CCND1 increased temozolomide efficacy in U251 and SHG-44 cells. After CCND1 overexpression, the temozolomide efficacy decreased in U251 and SHG-44 cells. Colony survival assay and apoptosis analysis confirmed that CCND1 inhibition renders cells more sensitive to temozolomide treatment and temozolomide-induced apoptosis in U251 and SHG-44 cells. Inhibition of P-gp (MDR1) by Tariquidar overcomes the effects of CCND1 overexpression on inhibiting temozolomide-induced apoptosis. Inhibition of CCND1 inhibited cell growth in vitro and in vivo significantly more effectively after temozolomide treatments than single temozolomide treatments. Finally, inhibition of CCND1 in glioma cells reduced tumor volume in a murine model. Conclusion: Taken together, these data indicate that CCND1 overexpression upregulate P-gp and induces chemoresistance in human malignant gliomas cells and that inhibition of CCND1 may be an effective means of overcoming CCND1 associated chemoresistance in human malignant glioma cells.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii100-ii101
Author(s):  
Tobey MacDonald ◽  
Anshu Malhotra ◽  
Jingbo Liu ◽  
Hongying Zhang ◽  
Matthew Schneiderjan ◽  
...  

Abstract Treatment for medulloblastoma (MB) is typically ineffective for MYC amplified or metastatic SHH, Group 3 and 4 subgroups. Promising preclinical and clinical results have been obtained for adult and pediatric malignant glioma treated with ONC-201, a selective antagonist of DRD2, a G-protein coupled receptor that regulates prosurvival pathways. Herein, we report the activity of ONC-201 and ONC-206, which has increased non-competitive antagonism of DRD2, against MB. We treated three different MB cell types representative of SHH- and Group 3-like cells, with varied levels of DRD2 expression, and consistently observed increased cell death in a dose-dependent manner at lower doses of ONC-206 compared to ONC-201. We also evaluated ClpP as an additional drug target in MB. ClpP is a mitochondrial protease that has been shown to directly bind and be activated by ONC 201, and is highly expressed at the protein level across pediatric MB, malignant glioma and ATRT, but not normal brain. We observed that similar to ONC-201, ONC-206 treatment of MB cells induces the restoration of mitochondrial membrane potential to the non-proliferative state, degradation of the mitochondrial substrate SDHB, reduction in survivin and elevation in ATF4 (integrated stress response). Importantly, ONC-206 treatment induced significant cell death of patient-derived SHH, WNT, and Group 3 tumors ex vivo and Group 4 cells in vitro, while having no observable toxicity in normal brain. ONC-206 treatment of a transgenic mouse model of Shh MB in vivo significantly reduces tumor growth and doubles survival time in a dose-dependent manner following 2 weeks of therapy. Additional in vivo data will be reported in preparation for a planned Phase I study of ONC-206 in children with malignant brain tumors.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1026
Author(s):  
Fatemah Bahman ◽  
Sebastien Taurin ◽  
Diab Altayeb ◽  
Safa Taha ◽  
Moiz Bakhiet ◽  
...  

The oral delivery of insulin is a convenient and safe physiological route of administration for management of diabetes mellitus. In this study, we developed a poly-(styrene-co-maleic acid) (SMA) micellar system for oral insulin delivery to overcome the rapid degradation of insulin in the stomach, improve its absorption in the intestine, and provide a physiologically-relevant method of insulin to reach portal circulation. The insulin was encapsulated into SMA micelles in a pH-dependent process. The charge and size of the nanoparticles were determined by dynamic light scattering. The insulin loading of the nanoparticles was measured by HPLC. The transport of the SMA-insulin through biological membranes was assessed in vitro using Caco-2 cells, ex vivo rat intestinal section, and in vivo in a streptozotocin-induced diabetes mouse model. SMA-insulin micelles were negatively charged and had a mean diameter of 179.7 nm. SMA-insulin efficiently stimulated glucose uptake in HepG-2 hepatic cells and was transported across the Caco-2 epithelial cells in vitro by 46% and ex vivo across intestinal epithelium by 22%. The animal studies demonstrated that orally-administered SMA-insulin can produce a hypoglycemic effect up to 3 h after administration of one dose. Overall, our results indicate that SMA micelles are capable of the oral delivery of bioactive compounds like insulin and can be effective tools in the management of diabetes.


2012 ◽  
Vol 72 (20) ◽  
pp. 5348-5362 ◽  
Author(s):  
Pedram Kharaziha ◽  
Hendrik De Raeve ◽  
Charlotte Fristedt ◽  
Qiao Li ◽  
Astrid Gruber ◽  
...  

2020 ◽  
Author(s):  
Siwen Dang ◽  
Rui Zhang ◽  
Sijia Tian ◽  
Banjun Ruan ◽  
Peng Hou ◽  
...  

Abstract Background: Gliomas are the most common and malignant tumors in the brain of humans, and the prognosis of glioma patient is very poor. MicroRNAs (miRNAs) play critical roles in different types of cancer by regulating gene expression at the posttranscriptional levels. Although miR-218 has been reported to be downregulated in gliomas, its role in gliomas still remains largely unknown. Methods: MiR-218 expression in gliomas and normal brain tissues (control subjects) were analyzed using TCGA dataset. The biological roles of miR-218 in glioma cells were determined by a series of in vitro and in vivo studies. The dual-luciferase reporter system was performed to identify potential targets of miR-218. The regulatory effect of miR-218 on TNC/AKT/AP-1/TGFβ1 pathway was evaluated by dual-luciferase reporter system and western blot.Results: We demonstrated miR-218 was significantly downregulated in gliomas compared to control subjects, and exerted a potent tumor suppressor in glioma cells by inhibiting cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, as well as inducing cell cycle arrest and apoptosis.Mechanistically, miR-218 inhibited malignant phenotypes of glioma cells by binding to the 3’ UTR of its target TNC and subsequently repressing its expression. As a result, it could reduce AKT phosphorylation and subsequently inhibit transcriptional activity of AP-1 by reducing JNK phosphorylation, downregulating the expression of TGFβ1, while TGFβ1 is able to, in turn, activate the TNC/AKT/AP-1 signaling axis.Conclusions: Our data uncover a previously unknown tumor suppressor role of miR-218 in glioma by blocking the TNC/AKT/AP-1/TGFβ1 positive feedback loop.


2020 ◽  
Vol 8 (2) ◽  
pp. e001560
Author(s):  
Michael John Zobel ◽  
Abigail K Zamora ◽  
Hong-wei Wu ◽  
Jianping Sun ◽  
Danny Lascano ◽  
...  

BackgroundImmunotherapy with anti-disialoganglioside dinutuximab has improved survival for children with high-risk neuroblastoma (NB) when given after induction chemotherapy and surgery. However, disease recurrence and resistance persist. Dinutuximab efficacy has not been evaluated when initiated before primary tumor removal. Using a surgical mouse model of human NB, we examined if initiating dinutuximab plus ex vivo-activated natural killer (aNK) cells before resection of the primary tumor improves survival.MethodsIn vitro, human NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc) were treated with dinutuximab and/or aNK cells and cytotoxicity was measured. In vivo, NB cells (SMS-KCNR-Fluc, CHLA-255-Fluc, or COG-N-415x PDX) were injected into the kidney of NOD-scid gamma mice. Mice received eight intravenous infusions of aNK cells plus dinutuximab beginning either 12 days before or 2 days after resection of primary tumors. Tumors in control mice were treated by resection alone or with immunotherapy alone. Disease was quantified by bioluminescent imaging and survival was monitored. aNK cell infiltration into primary tumors was quantified by flow cytometry and immunohistochemistry at varying timepoints.ResultsIn vitro, aNK cells and dinutuximab were more cytotoxic than either treatment alone. In vivo, treatment with aNK cells plus dinutuximab prior to resection of the primary tumor was most effective in limiting metastatic disease and prolonging survival. aNK cell infiltration into xenograft tumors was observed after 1 day and peaked at 5 days following injection.ConclusionDinutuximab plus aNK cell immunotherapy initiated before resection of primary tumors decreases disease burden and prolongs survival in an experimental mouse model of NB. These findings support the clinical investigation of this treatment strategy during induction therapy in patients with high-risk NB.


Sign in / Sign up

Export Citation Format

Share Document