DDRE-39. REPURPOSING CHEMOTHERAPIES AGAINST HIGH-RISK MENINGIOMAS WITH GUIDANCE BY METHYLATION PROFILES

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi82-vi83
Author(s):  
Anh Tran ◽  
Wenxia Wang ◽  
Denise Scholtens ◽  
Lyndsee Zhang ◽  
Jenny Pokorny ◽  
...  

Abstract Meningioma is the most common primary brain tumor with nearly thirty thousand new cases in the US every year. While most meningiomas are categorized as benign, they can still impact brain structures and result in disability or lethality. Currently, there is no widely accepted chemotherapy, and our understanding of the disease’s molecular characteristics is very limited. In this study, we aimed to identify druggable molecular targets for repurposing of chemotherapies against meningiomas. We analyzed previously published dataset of 493 meningioma patients by Felix Sahm et al (Lancet Oncology, 2017) for association with progression-free survival (PFS) and searched for candidate drugs targeting the pathways linked to poor patient prognosis. Our analyses indicated 981 genes for which methylation of mapped CpG sites was found to be consistently associated with shorter or longer PFS at FDR-adjusted p < 0.05. Using Cytoscape/Reactome FI software, we cross-referenced current cancer drugs that target these and identified docetaxel and raloxifene hydrochloride as potential candidates. In our vitro study, docetaxel caused apoptotic cell death in established and primary patient meningioma lines of various grades. IC50s of docetaxel in the seventeen meningioma cell lines tested ranged from 0.8nM to 4.4mM, which partially corresponded to the growth rates of these cells. As monotherapy, the effects of docetaxel on meningioma were attenuated by multidrug resistance protein 1 (ABCB1) and Cytochrome P450 1B1 (CYP1B1). Docetaxel at 2µM augment double-stranded DNA damage caused by irradiation in vitro, leading to increased cell death. In animal model, low doses of docetaxel and radiation therapy had synergistic effects, increasing survival of mice intracranially implanted with human meningioma cells. Our study will advance our understanding of molecular pathways driving meningioma and identify potential targeted therapies to bridge the current gap in treatment of the disease.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii101-ii101
Author(s):  
Anh Tran ◽  
Denise Scholtens ◽  
Lyndsee Zhang ◽  
Jenny Pokorny ◽  
Aneta Baran ◽  
...  

Abstract Meningioma is the most common primary brain tumor with nearly thirty thousand new cases in the US every year. While most meningiomas grow slowly, hence categorized as benign, they can still impact brain structures and result in disability or lethality. Currently, there is no widely accepted chemotherapy for meningioma, and our understanding of the disease’s molecular characteristics is very limited. In this study, we aimed to identify druggable molecular targets for repurposing of chemotherapies against meningiomas. We analyzed previously published dataset of 493 meningioma patients by Felix Sahm et al (Lancet Oncology, 2017) for association with progression-free survival (PFS) and identified associations of methylation at individual CpG sites as detected by the Illumina 450k platform with PFS. Subsequently, we searched for candidate drugs targeting the pathways linked to poor patient prognosis. Our analyses indicated 981 genes for which methylation of mapped CpG sites was found to be consistently associated with shorter PFS (positive hazard ratios (HRs)) and with longer PFS (negative HRs) at FDR-adjusted p < 0.05. Using Cytoscape/Reactome FI app, we cross-referenced current cancer drugs that target these and identified docetaxel and raloxifene hydrochloride as potential candidates. In our vitro study, docetaxel caused apoptotic cell death in established and primary patient meningioma lines of various grades. IC50s of docetaxel in the sixteen meningioma cell lines tested ranged from 0.8nM to 4.4mM, which partially corresponded to the growth rates of these cells. Our study will advance our understanding of molecular pathways driving meningioma and identify potential targeted therapies to bridge the current gap in treatment of the disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 73-80 ◽  
Author(s):  
JongYeob Choi ◽  
MinWha Jo ◽  
EunYoung Lee ◽  
DooSeok Choi

In this study, we examined whether granulosa cell autophagy during follicular development and atresia was regulated by the class I phosphoinositide-3 kinase/protein kinase B (AKT) pathway, which is known to control the activity of mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. Ovaries and granulosa cells were obtained using an established gonadotropin-primed immature rat model that induces follicular development and atresia. Autophagy was evaluated by measuring the expression level of microtubule-associated protein light chain 3-II (LC3-II) using western blots and immunohistochemistry. The activity of AKT and mTOR was also examined by observing the phosphorylation of AKT and ribosomal protein S6 kinase (S6K) respectively. After gonadotropin injection, LC3-II expression was suppressed and phosphorylation of AKT and S6K increased in rat granulosa cells. By contrast, gonadotropin withdrawal by metabolic clearance promoted LC3-II expression and decreased phosphorylation of AKT and S6K. In addition,in-vitroFSH treatment of rat granulosa cells also indicated inhibition of LC3-II expression accompanied by a marked increase in phosphorylation of AKT and S6K. Inhibition of AKT phosphorylation using AKT inhibitor VIII suppressed FSH-mediated phosphorylation of S6K, followed by an increase in LC3-II expression. Furthermore, co-treatment with FSH and AKT inhibitor increased the levels of apoptosis and cell death of granulosa cells compared with the single treatment with FSH. Taken together, our findings indicated that AKT-mediated activation of mTOR suppresses granulosa cell autophagy during follicular development and is involved in the regulation of apoptotic cell death.


Author(s):  
Mateusz Kutyła ◽  
Aleksandra Maciejczyk ◽  
Mariusz Trytek ◽  
Joanna Jakubowicz-Gil

Background: Gliomas are highly malignant brain tumors with high resistance to chemotherapy. Therefore, investigations of new therapeutic molecules with high anti-glioma activity are of great importance. Objective: In this work, biocatalytic esterification of terpene alcohols with proven anti-cancer activity was performed to enhance their potency to induce cell death in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines in vitro. Method and Results: We used primary terpene alcohols and carboxylic acids with a length of two to nine carbon atoms. The structure of the drinks influenced the esterification efficiency, which decreased in the following order: monocyclic > linear > bicyclic. Terpene alcohols and their esters only induced apoptotic cell death, which is highly desirable from a therapeutic point of view but did not induce autophagy and necrosis. The esterification of perillyl alcohol with butyric acid caused a 4-fold increase in cell death induction in the T98G line. Citronellol valerate, caprylate, and pelargonate and myrtenol butyrate, caprylate, and pelargonate also showed higher activity than their alcohol precursors. Conclusion: We have herein shown that esterification of natural alcohols by biocatalysis can improve the activity for other compounds investigated for their anti-glioma activity.


1994 ◽  
Vol 180 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M G Cifone ◽  
R De Maria ◽  
P Roncaioli ◽  
M R Rippo ◽  
M Azuma ◽  
...  

Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mei Ying Xuan ◽  
Shang Guo Piao ◽  
Jun Ding ◽  
Qi Yan Nan ◽  
Mei Hua Piao ◽  
...  

Dapagliflozin, a sodium-glucose cotransporter-2 inhibitor, offers renoprotection in diabetes. However, potential for use in nondiabetic kidney disease remains unknown. Herein, we assessed whether dapagliflozin alleviates renal fibrosis by interfering with necroinflammation in a rat model of unilateral ureteral obstruction (UUO) and in vitro. After induction of UUO, rats were administered dapagliflozin daily for seven consecutive days. UUO induced significant renal tubular necrosis and overexpression of RIP1-RIP3-MLKL axis proteins; these coincided with NLRP3 inflammasome activation, and subsequent development of renal fibrosis. Oxidative stress caused by UUO is tightly associated with endoplasmic reticulum stress and mitochondrial dysfunction, leading to apoptotic cell death through Wnt3α/β-catenin/GSK-3β signaling; all of which were abolished by both dapagliflozin and specific RIP inhibitors (necrostatin-1 and GSK872). In H2O2-treated HK-2 cells, dapagliflozin and RIP inhibitors suppressed overexpression of RIP1-RIP3-MLKL proteins and pyroptosis-related cytokines, decreased intracellular reactive oxygen species production and apoptotic cell death, whereas cell viability was improved. Moreover, activated Wnt3α/β-catenin/GSK-3β signaling was inhibited by dapagliflozin and Wnt/β-catenin inhibitor ICG-001. Our findings suggest that dapagliflozin ameliorates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in UUO.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simeng Zhang ◽  
Zhongyan Hua ◽  
Gen Ba ◽  
Ning Xu ◽  
Jianing Miao ◽  
...  

Abstract Background Neuroblastoma (NB) is a common solid malignancy in children that is associated with a poor prognosis. Although the novel small molecular compound Dimethylaminomicheliolide (DMAMCL) has been shown to induce cell death in some tumors, little is known about its role in NB. Methods We examined the effect of DMAMCL on four NB cell lines (NPG, AS, KCNR, BE2). Cellular confluence, survival, apoptosis, and glycolysis were detected using Incucyte ZOOM, CCK-8 assays, Annexin V-PE/7-AAD flow cytometry, and Seahorse XFe96, respectively. Synergistic effects between agents were evaluated using CompuSyn and the effect of DMAMCL in vivo was evaluated using a xenograft mouse model. Phosphofructokinase-1, liver type (PFKL) expression was up- and down-regulated using overexpression plasmids or siRNA. Results When administered as a single agent, DMAMCL decreased cell proliferation in a time- and dose-dependent manner, increased the percentage of cells in SubG1 phase, and induced apoptosis in vitro, as well as inhibiting tumor growth and prolonging survival in tumor-bearing mice (NGP, BE2) in vivo. In addition, DMAMCL exerted synergistic effects when combined with etoposide or cisplatin in vitro and displayed increased antitumor effects when combined with etoposide in vivo compared to either agent alone. Mechanistically, DMAMCL suppressed aerobic glycolysis by decreasing glucose consumption, lactate excretion, and ATP production, as well as reducing the expression of PFKL, a key glycolysis enzyme, in vitro and in vivo. Furthermore, PFKL overexpression attenuated DMAMCL-induced cell death, whereas PFKL silencing promoted NB cell death. Conclusions The results of this study suggest that DMAMCL exerts antitumor effects on NB both in vitro and in vivo by suppressing aerobic glycolysis and that PFKL could be a potential target of DMAMCL in NB.


2009 ◽  
Vol 37 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Mathieu Vinken ◽  
Elke Decrock ◽  
Elke De Vuyst ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  

This study was set up to critically evaluate a commonly-used in vitro model of hepatocellular apoptotic cell death, in which freshly isolated hepatocytes, cultured in a monolayer configuration, are exposed to a combination of Fas ligand and cycloheximide for six hours. A set of well-acknowledged cell death markers was addressed: a) cell morphology was studied by light microscopy; b) apoptotic and necrotic cell populations were quantified by in situ staining with Annexin-V, Hoechst 33342 and propidium iodide (PI); c) apoptotic and necrotic activities were monitored by probing caspase 3-like activity and measuring the extracellular leakage of lactate dehydrogenase (LDH), respectively; and d) the expression of apoptosis regulators was investigated by immunoblotting. The initiation of apoptosis was evidenced by the activation of caspase 8 and caspase 9, and increased Annexin-V reactivity. Progression through the apoptotic process was confirmed by the activation of caspase 3 and Bid, the enhanced expression of Bax, and the occurrence of nuclear fragmentation. Late transition to a necrotic appearance was demonstrated by an increased number of PI-positive cells and augmented extracellular release of LDH. Thus, the in vitro model allows the study of the entire course of Fas-mediated hepatocellular apoptotic cell death, which is not possible in vivo. This experimental system can serve a broad range of in vitro pharmaco-toxicological purposes, thereby directly assisting in the reduction of animal experimentation.


Sign in / Sign up

Export Citation Format

Share Document