TAMI-61. EXAMINING THE ROLE OF HYPOXIA INDUCED GENES CXCR4 AND NXPH4 IN INVASION OF HYPOXIC GLIOBLASTOMA CELLS

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi211-vi211
Author(s):  
Valerie Marallano ◽  
Anirudh Sattiraju ◽  
Hongyan Zou ◽  
Roland Friedel

Abstract Hypoxia (low oxygen) has been associated with adverse effects in tumor biology by exaggerating the capabilities of invasion, proliferation, and survival of tumor cells within the tumor microenvironment. We engineered glioblastoma (GBM) proneural cells with a novel hypoxia reporter, HRE-UnaG, to study areas of tumor hypoxia and the effects that these hypoxic cells have on tumorigenesis. Single cell RNA-seq analysis from a mouse intracranially injected with our HRE dUnaG GBM cells revealed a shift to a mesenchymal state upon hypoxia (detected by expression of UnaG). Two genes, CXCR4 and NXPH4, were identified as being specifically induced in the hypoxic population. Our studies focus on the hypothesis that these two hypoxia induced genes, CXCR4 and NXPH4, are upregulated in hypoxic GBM cells, which may allow tumor cells to become more aggressive and resistant to conventional forms of therapies. GBM cells will be transduced with lentiviral vectors for Dox inducible shRNA knockdown of CXCR4 or NXPH4 to test specific contribution of these genes to the phenotype of the hypoxic population, with particular focus on the change in invasion and overall tumor burden upon gene silencing.

2021 ◽  
Vol 10 ◽  
Author(s):  
Liang Peng ◽  
Wei Sun ◽  
Lin Chen ◽  
Wei-Ping Wen

ObjectivesTo investigate the role of interleukin-33 (IL-33) in head and neck squamous cell carcinoma (HNSCC).Materials and MethodsRNA-seq data of 520 cases of HNSCC were retrieved from The Cancer Genome Atlas. The tumor microenvironment was deconstructed by xCell using bulk RNA-seq data. The cohort was dichotomized by the median IL-33 expression level. Immune cell components and molecular markers were compared between the high and low IL-33 groups. The prognostic value of IL-33 was evaluated by the log-rank test. Differential gene expression analysis and KEGG pathway enrichment analysis were also conducted. The relationship between the IL-33 expression level and the abundance of its potential cellular sources was evaluated by Pearson’s partial correlation test. Subgroup analysis was conducted in laryngeal, oropharyngeal, and oral cavity squamous cell carcinoma (LSCC, OPSCC, and OCSCC).ResultsThe role of IL-33 in HNSCC was heterogeneous among tumors at different sites. In LSCC, IL-33 may increase the extent of malignancy of tumor cells and act as a pro-tumor factor. In OCSCC, IL-33 may play a role in orchestrating the immune responses against tumor cells and act as an antitumor factor. The role of IL-33 in OPSCC was undetermined. IL-33 in LSCC was mainly derived from endothelial cells, while IL-33 in OCSCC was mainly derived from endothelial and epithelial cells.ConclusionAccording to the different sources of IL-33 in LSCC and OCSCC, we propose a hypothesis that stroma-derived IL-33 could favor tumor progression, while epithelial-derived IL-33 could favor antitumor immune responses in HNSCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Asieh Emami Nejad ◽  
Simin Najafgholian ◽  
Alireza Rostami ◽  
Alireza Sistani ◽  
Samaneh Shojaeifar ◽  
...  

AbstractHypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Saurabh Satija ◽  
Harpreet Kaur ◽  
Murtaza M. Tambuwala ◽  
Prabal Sharma ◽  
Manish Vyas ◽  
...  

Hypoxia is an integral part of tumor microenvironment, caused primarily due to rapidly multiplying tumor cells and a lack of proper blood supply. Among the major hypoxic pathways, HIF-1 transcription factor activation is one of the widely investigated pathways in the hypoxic tumor microenvironment (TME). HIF-1 is known to activate several adaptive reactions in response to oxygen deficiency in tumor cells. HIF-1 has two subunits, HIF-1β (constitutive) and HIF-1α (inducible). The HIF-1α expression is largely regulated via various cytokines (through PI3K-ACT-mTOR signals), which involves the cascading of several growth factors and oncogenic cascades. These events lead to the loss of cellular tumor suppressant activity through changes in the level of oxygen via oxygen-dependent and oxygen-independent pathways. The significant and crucial role of HIF in cancer progression and its underlying mechanisms have gained much attention lately among the translational researchers in the fields of cancer and biological sciences, which have enabled them to correlate these mchanisms with various other disease modalities. In the present review, we have summarized the key findings related to the role of HIF in the progression of tumors.


2020 ◽  
Vol 9 (8) ◽  
pp. 2418
Author(s):  
Roberto Tamma ◽  
Girolamo Ranieri ◽  
Giuseppe Ingravallo ◽  
Tiziana Annese ◽  
Angela Oranger ◽  
...  

Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.


2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 8-11 ◽  
Author(s):  
Paola Nisticò ◽  
Gennaro Ciliberto

Our view of cancer biology radically shifted from a “cancer-cell-centric” vision to a view of cancer as an organ disease. The concept that genetic and/or epigenetic alterations, at the basis of cancerogenesis, are the main if not the exclusive drivers of cancer development and the principal targets of therapy, has now evolved to include the tumor microenvironment in which tumor cells can grow, proliferate, survive, and metastasize only within a favorable environment. The interplay between cancer cells and the non-cellular and cellular components of the tumor microenvironment plays a fundamental role in tumor development and evolution both at the primary site and at the level of metastasis. The shape of the tumor cells and tumor mass is the resultant of several contrasting forces either pro-tumoral or anti-tumoral which have at the level of the tumor microenvironment their battle field. This crucial role of tumor microenvironment composition in cancer progression also dictates whether immunotherapy with immune checkpoint inhibitor antibodies is going to be efficacious. Hence, tumor microenvironment deconvolution has become of great relevance in order to identify biomarkers predictive of efficacy of immunotherapy. In this short paper we will briefly review the relationship between inflammation and cancer, and will summarize in 10 short points the key concepts learned so far and the open challenges to be solved.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fan Shi ◽  
Dan Luo ◽  
Xuexiao Zhou ◽  
Qiaozhen Sun ◽  
Pei Shen ◽  
...  

AbstractAutophagy has a complex dual role in tumor survival or cell death owning to that is an evolutionarily conserved catabolic mechanism and provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Hyperthermia is a rapidly growing field in cancer therapy and many advances have been made in understanding and applying the mechanisms of hyperthermia. The shallow oral and maxillofacial position and its abundant blood supply are favorable for the use of hyperthermia. However, the relationship between hyperthermia and autophagy has not been examined of oral squamous cell carcinoma (OSCC) in the tumor hypoxia microenvironment. Here, the expression level of autophagy relative genes is examined to explore autophagy effect on the responses of hyperthermia, hypoxia, and innutrition tumor microenvironment. It is founded that hyperthermia and hypoxia cause autophagy in starvation conditions; further, in hypoxia and innutrition tumor microenvironment, hyperthermia combines YC-1 and 3-MA could inhibit HIF-1α/BNIP3/Beclin1 signal pathway and decrease the secretion of HMGB1; moreover, the cell apoptosis rate increases with an inhibited of cell migration capacity. Thus, the present study demonstrated that combined use of YC-1 and 3-MA might increase the death of tumor cells in physiological and hyperthermic conditions, which could be relevant with the inhibition of autophagy in OSCC tumor cells under hypoxia microenvironment in vitro, which offers new insight into the therapy of OSCC and its application in treating others study carcinomas.


Antibodies ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 61
Author(s):  
Joshua M. Thurman ◽  
Jennifer Laskowski ◽  
Raphael A. Nemenoff

Although it was long believed that the complement system helps the body to identify and remove transformed cells, it is now clear that complement activation contributes to carcinogenesis and can also help tumors to escape immune-elimination. Complement is activated by several different mechanisms in various types of cancer, and complement activation fragments have multiple different downstream effects on cancer cells and throughout the tumor microenvironment. Thus, the role of complement activation in tumor biology may vary among different types of cancer and over time within a single tumor. In multiple different pre-clinical models, however, complement activation has been shown to recruit immunosuppressive myeloid cells into the tumor microenvironment. These cells, in turn, suppress anti-tumor T cell immunity, enabling the tumor to grow. Based on extensive pre-clinical work, therapeutic complement inhibitors hold great promise as a new class of immunotherapy. A greater understanding of the role of complement in tumor biology will improve our ability to identify those patients most likely to benefit from this treatment and to rationally combine complement inhibitors with other cancer therapies.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 93 ◽  
Author(s):  
James Jabalee ◽  
Rebecca Towle ◽  
Cathie Garnis

Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii213-ii213
Author(s):  
Wenlong Zhang ◽  
Iven-Alex von Mücke-Heim ◽  
Matthias Mulazzani ◽  
Philipp Karschnia ◽  
Andreas Straube ◽  
...  

Abstract Metastasis to the brain is a frequent complication in lung cancer and is still associated with a dismal prognosis. Current treatment strategies not only target tumor cells but also focus on cells of the tumor microenvironment like tumor associated microglia/macrophages (TAMs). The interactions between tumor cells and TAMs during different steps of cerebral metastasis formation of lung cancer brain metastasis are poorly characterized. Moreover, the role of CX3CR1 in this process remains unclear. We established a syngeneic cerebral metastasis mouse model by combining a chronic cranial window and two-photon laser scanning microscopy (TPLSM), which allows the tracking of single fluorescent metastasizing tumor cells and the tumor microenvironment on a cellular resolution in vivoover time for a period of weeks. Transgenic CX3CR1 proficient and deficient mice (CX3CRGFP/wt and CX3CR1GFP/GFP) were injected with red fluorescent Lewis lung carcinoma cells. During different steps of metastasis formation (extravasation, formation of micro- and macrometastasis) the density and cell body volume of TAMs, their interaction with tumor cells and possible influence on the fate of single metastatic tumor cells were investigated using serial TPLSM. We found that during metastasis formation TAM density was significantly lower in CX3CR1 deficient mice. However, activation as assessed by TAM morphology did not differ in the absence of CX3CR1. Strikingly, CX3CR1 deficiency was associated with a significant increase of tumor cells successfully extravasating the cerebral vasculature. However, subsequent steps (mirco- and macrometastasis formation) were observed less frequent in CX3CR1 deficient mice. In summary, our results highlight a complex role of CX3CR1 for TAMs during cerebral metastasis formation, indicating anti-tumorous properties of CX3CR1 at early steps and possible pro-tumorous effects at later stages (micro- and macrometastasis formation).


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3321-3321
Author(s):  
Rong Li ◽  
Meiping Ren ◽  
Ni Chen ◽  
Mao Luo ◽  
Jianbo Wu

Abstract Abstract 3321 Platelets play a fundamental role in maintaining hemostasis and have been shown to participate in hemorrhagic metastasis. However, the role of platelets in the tumor growth, angiogenesis, and metastasis initiation remains undefined. The B16/F10 melanoma cancer cells model of metastasis and the Lewis lung carcinoma (LLC) spontaneous pulmonary metastasis model were used for this purpose. Using induction of thrombocytopenia, primary tumor growth was monitored and every 3 days anti-GPIbα or rat IgG injections were initiated when tumor reached ∼500mm3and continued until tumor reached to 3 weeks. We showed that platelet depletion had no change in tumor growth but reduced metastasis. Platelet depletion significantly increased pericyte coverage and reduced vascular density compared with control mice. We evaluated the ratio of fluorescence intensities within the plasma and tumor following injection of mice with FITC-dextran. We found that the FITC-dextran was similarly deposited into the tumor tissue in either platelet-depleted or control mice, indicating that tumor vessel perfusion did not differ in either platelet-depleted or control mice. To further gain insight into the molecular mechanisms associated with reduced metastasis resulting from platelet depletion, we assessed hypoxia levels by examining pimonidazole adduct formation in the tumors of platelet-depleted and control mice and found decreased hypoxic levels in the platelet-depleted tumors. In addition, expression of the hypoxia-inducible transcription factor HIF-1α was also significantly reduced in the tumors of platelet-depleted mice. Tumor hypoxia is strongly associated with deposition of hemoglobin. We measured the intratumor hemoglobin content, reflecting the level of erythrocytes extravasation. The hemoglobin content in the tumors of mice with platelet-depletion was significantly higher than that of control mice (172.11 ± 20.2 g/L/g Vs. 110.28 ± 12.4 g/L/g, p<0.05) Based on the known induction effects of hypoxia and cancer invasiveness on the expression and activation of the proinvasive tyrosine kinase receptor Met, we analyzed total protein and tyrosine phosphorylation levels of Met in both platelet-depleted and control mice. Western blotting analysis revealed that platelet-depletion caused a significantly decrease of both total Met and phosph-Met in tumors when compared to tumors from control mice. To evaluate intratumoral growth factor level, microdialysis was performed after 3 weeks and there was a significant decrease of extracellular VEGF and TNF-β in platelet depletion mice compared with control mice. Recent studies demonstrated that abundant platelets were detected in the tumor microenvironment apart from the vasculature. Based on the finding platelets in contact with tumor cells outside the bloodstream, we examined the functional effects of co-implantation of B16/F10 tumor cells with platelets on tumor progression and metastasis. B16/F10 melanoma cancer cells were implanted into back of wild type mice. During a 3-weeks growth, co-implantation of B16/F10 with platelets not only led to promoted tumor volume (3968 ± 296 mm3Vs. 2956 ± 180 mm3, p<0.05) and weight (5.529 ± 0.35 g Vs. 3.943 ± 0.738 g, p<0.05 ) compared with B16/F10 alone implantation, but also led to an increase in metastasis. Furthermore, in vitro co-culture of B16/F10 cancer cells with platelets showed a significant increase in B16/F10 cancer cells invasion compared with B16/F10 cancer cells alone. In conclusion, our findings demonstrate for the first time that platelets play a critical role in the initiation of tumor metastasis. Moreover, our findings suggest that platelets within the primary tumor microenvironment are likely involved in tumor progression and metastasis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document