scholarly journals NIMG-76. SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) FOR INTRAOPERATIVE BRAIN TUMOR IMAGING AND PHOTOTHERMAL THERAPY

2017 ◽  
Vol 19 (suppl_6) ◽  
pp. vi159-vi159 ◽  
Author(s):  
Hamed Arami ◽  
Edwin Chang ◽  
Chirag B Patel ◽  
Steven James Madsen ◽  
Ryan Miller Davis ◽  
...  
2019 ◽  
Vol 10 (47) ◽  
pp. 10900-10910 ◽  
Author(s):  
Yingfang Xing ◽  
Zhewei Cai ◽  
Meijuan Xu ◽  
Wenzheng Ju ◽  
Xiaojun Luo ◽  
...  

A molecular signaling pathway of apoptosis induced by photothermal therapy was revealed by surface-enhanced Raman spectroscopy.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Anindita Das ◽  
Vinothini Arunagiri ◽  
Hsieh-Chih Tsai ◽  
Adhimoorthy Prasannan ◽  
Juin-Yih Lai ◽  
...  

Aim: To prepare efficient metal-semiconductor nanoparticles as noninvasive, real-time imaging probes for photothermal therapy (PTT) applications. Materials & methods: A bottom-up approach was used to fabricate core-shell Ag@CuS nanoparticles (NPs). PTT and Raman mapping were done using HeLa cells. Theoretical simulation of electric field enhancement and heat dissipation density of Ag@CuS NPs was performed. Results: PTT-induced hyperthermia was achieved under 940 nm near-infrared light irradiation. Surface-enhanced Raman spectroscopy (SERS) signals of dye molecules were observed when conjugated with Ag@CuS NPs. Conclusion: Ag@CuS NPs are found to be efficient for SERS imaging and localized heating under laser irradiation, making a promising candidate for SERS-guided PTT.


2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document