Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature

2020 ◽  
Vol 78 (10) ◽  
pp. 798-812 ◽  
Author(s):  
Leigh A Frame ◽  
Elise Costa ◽  
Scott A Jackson

Abstract Context The ability to measure the gut microbiome led to a surge in understanding and knowledge of its role in health and disease. The diet is a source of fuel for and influencer of composition of the microbiome. Objective To assess the understanding of the interactions between nutrition and the gut microbiome in healthy adults. Data Sources PubMed and Google Scholar searches were conducted in March and August 2018 and were limited to the following: English, 2010–2018, healthy adults, and reviews. Data Extraction A total of 86 articles were independently screened for duplicates and relevance, based on preidentified inclusion criteria. Data Analysis Research has focused on dietary fiber – microbiota fuel. The benefits of fiber center on short-chain fatty acids, which are required by colonocytes, improve absorption, and reduce intestinal transit time. Contrastingly, protein promotes microbial protein metabolism and potentially harmful by-products that can stagnate in the gut. The microbiota utilize and produce micronutrients; the bidirectional relationship between micronutrition and the gut microbiome is emerging. Conclusions Nutrition has profound effects on microbial composition, in turn affecting wide-ranging metabolic, hormonal, and neurological processes. There is no consensus on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Leigh Frame ◽  
Elise Costa ◽  
Scott Jackson

Abstract Objectives The ability to measure and describe the microbiome has led to a surge in information about the gut microbiome and its role in health and disease. The relationship between nutrition and the gut microbiome is central, as the diet is a source of microbiota, a source of fuel for the microbiota, and an indicator of the composition of the gut microbiome. We aim to assess the current understanding of the interactions between nutrition and the gut microbiome in healthy adults. A solid understanding of the interactions between nutrition and a healthy gut microbiome will form the foundation for understanding the role in disease prevention and treatment. Methods PubMed and Google Scholar searches for review articles relating to nutrition and the gut microbiome in healthy adults led to the inclusion of 38 articles in this systematic review. Results Much of the research has focused on carbohydrates in the form of dietary fiber, which are fuel for the gut microbiota. The beneficial effects of fiber have centered on Short Chain Fatty Acids (SCFAs) that are required by colonocytes (barrier function), improve absorption (minerals, water), and reduce intestinal transit time (colon cancer). Contrastingly, a low fiber, high protein diet promotes microbial protein metabolism, leading to potentially dangerous by-products that can stagnate in the gut. The bidirectional relationship between micronutrition and the gut microbiome is emerging. The microbiota utilize and produce micronutrients, leading to confounding relationships between nutritional status and biologic micronutrient concentrations, chiefly the B and K vitamins. While promising, the study of non-nutritive food components (polyphenols) and the gut microbiome is in its infancy. The role of other food components (food additives, contaminants) warrant exploration and are a significant research gap to-date. Conclusions Diet and nutrition have profound effects on the gut microbiome composition. This, in turn, affects a wide array of metabolic, hormonal, and neurological processes that influence our health and disease. Currently, there is no consensus in the scientific community on what defines a “healthy” gut microbiome. Future research must consider individual responses to diet and the role of diet in the response of the gut microbiome to interventions. Funding Sources N/A. Supporting Tables, Images and/or Graphs


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shasha Xiang ◽  
Kun Ye ◽  
Mian Li ◽  
Jian Ying ◽  
Huanhuan Wang ◽  
...  

Abstract Background Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. Results In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. Conclusions Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs.


2021 ◽  
Author(s):  
Josue Castro Mejia ◽  
Bekzod Khakimov ◽  
Mads Lind ◽  
Eva Garne ◽  
Petronela Paulova ◽  
...  

Increasing evidence indicates that the gut microbiome (GM) plays an important role in the etiology of dyslipidemia. To date, however, no in depth characterization of the associations between GM and its metabolic attributes with deep profiling of lipoproteins distributions (LPD) among healthy individuals has been conducted. To determine associations and contributions of GM composition and its cofactors with distribution profiles of lipoprotein subfractions, we studied blood plasma LPD, fecal short-chain fatty acids (SCFA) and GM of 262 healthy Danish subjects aged 19-89 years. Stratification of LPD segregated subjects into three clusters of profiles that reflected differences in the lipoprotein subclasses, corresponded well with limits of recommended levels of main lipoprotein fractions and were largely explained by host characteristics such as age and body mass index. Higher levels of HDL, particularly driven by large subfractions (HDL2a and HDL2b), were associated with a higher relative abundance of Ruminococcaceae and Christensenellaceae. Increasing levels of total cholesterol and LDL, which were primarily associated with large 1 and 2 subclasses, were positively associated with Lachnospiraceae and Coriobacteriaceae, and negatively with Bacteroidaceae and Bifidobacteriaceae. Metagenome sequencing showed a higher abundance of genes involved in the biosynthesis of multiple B-vitamins and SCFA metabolism among subjects with healthier LPD profiles. Metagenomic assembled genomes (MAGs) affiliated mainly to Eggerthellaceae and Clostridiales were identified as the contributors of these genes and whose relative abundance correlated positively with larger subfractions of HDL. The results of this study demonstrate that remarkable differences in composition and metabolic traits of the GM are associated with variations in LPD among healthy subjects. Findings from this study provide evidence for GM considerations in future research aiming to shade light on mechanisms of the GM - dyslipidemia axis.


Gut ◽  
2017 ◽  
Vol 68 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Henrik Munch Roager ◽  
Josef K Vogt ◽  
Mette Kristensen ◽  
Lea Benedicte S Hansen ◽  
Sabine Ibrügger ◽  
...  

ObjectiveTo investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality.Design60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed.Results50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye.ConclusionCompared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation.Trial registration numberNCT01731366; Results.


2019 ◽  
Vol 13 (11) ◽  
pp. 1439-1449 ◽  
Author(s):  
Marjolein A Y Klaassen ◽  
Floris Imhann ◽  
Valerie Collij ◽  
Jingyuan Fu ◽  
Cisca Wijmenga ◽  
...  

Abstract Background and Aims Crohn’s disease [CD] is a chronic inflammatory disorder of the gastrointestinal tract characterised by alternating periods of exacerbation and remission. We hypothesised that changes in the gut microbiome are associated with CD exacerbations, and therefore aimed to correlate multiple gut microbiome features to CD disease activity. Methods Faecal microbiome data generated using whole-genome metagenomic shotgun sequencing of 196 CD patients were of obtained from the 1000IBD cohort [one sample per patient]. Patient disease activity status at time of sampling was determined by re-assessing clinical records 3 years after faecal sample production. Faecal samples were designated as taken ‘in an exacerbation’ or ‘in remission’. Samples taken ‘in remission’ were further categorised as ‘before the next exacerbation’ or ‘after the last exacerbation’, based on the exacerbation closest in time to the faecal production date. CD activity was correlated with gut microbial composition and predicted functional pathways via logistic regressions using MaAsLin software. Results In total, 105 bacterial pathways were decreased during CD exacerbation (false-discovery rate [FDR] &lt;0.1) in comparison with the gut microbiome of patients both before and after an exacerbation. Most of these decreased pathways exert anti-inflammatory properties facilitating the biosynthesis and fermentation of various amino acids [tryptophan, methionine, and arginine], vitamins [riboflavin and thiamine], and short-chain fatty acids [SCFAs]. Conclusions CD exacerbations are associated with a decrease in microbial genes involved in the biosynthesis of the anti-inflammatory mediators riboflavin, thiamine, and folate, and SCFAs, suggesting that increasing the intestinal abundances of these mediators might provide new treatment opportunities. These results were generated using bioinformatic analyses of cross-sectional data and need to be replicated using time-series and wet lab experiments.


2020 ◽  
Author(s):  
Tian Qin ◽  
Jingyuan Fu ◽  
Henkjan J. Verkade

Abstract Liver transplantation (LT) is a life-saving option for children with end-stage liver disease. However, about 50% of patients develop graft fibrosis in 1 year after LT, with normal liver function. Graft fibrosis may progress to cirrhosis, resulting in graft dysfunction and ultimately the need for re-transplantation. Previous studies have identified various risk factors for the post-LT fibrogenesis, however, to date, neither of the factors seems to fully explain the cause of graft fibrosis. Recently, evidence has accumulated on the important role of the gut microbiome in outcomes after solid organ transplantation. As an altered microbiome is present in pediatric patients with end-stage liver diseases, we hypothesize that the persisting alterations in microbial composition or function contribute to the development of graft fibrosis, for example by bacteria translocation due to increased intestinal permeability, imbalanced bile acids metabolism, and/or decreased production of short-chain fatty acids (SCFAs). Subsequently, an immune response can be activated in the graft, together with the stimulation of fibrogenesis. Here we review current knowledge about the potential mechanisms by which alterations in microbial composition or function may lead to graft fibrosis in pediatric LT and we provide prospective views on the efficacy of gut microbiome manipulation as a therapeutic target to alleviate the graft fibrosis and to improve long-term survival after LT.


2020 ◽  
Author(s):  
Yen Ju Liou ◽  
Chun Ying Lee ◽  
Chiou-Mei Lee ◽  
Cheng Hang Wu

BACKGROUND Smart healthcare devices are being increasingly employed to support medical services, and evidence has shown promising results in using such tools for smoking cessation, but there has been no scoping review on this topic so far and the trends of research in this area has not been fully examined. This review provides a comprehensive evaluation of research in this area. OBJECTIVE This scoping review aimed to analyze the research trends in this area to speculate on the future of smart health devices for smoking cessation. METHODS The study was based on the methodology of scoping review. Literature searches were done in PubMed, EMBASE, MEDLINE using terms related to smart healthcare. Titles, abstracts, and full reports were reviewed independently by two reviewers. Papers were included if they focused on discussing smart healthcare interventions for smoking cessation. Data were extracted independently by two reviewers. RESULTS Searches identified 3982 references and 25 papers were included in the scoping review. Mobile applications was the most numerous category of studies, making up 56% (n=14) of all studies and this had increased markedly in recent 5 years. We identified 6 types of outcome measures. Besides quit rate, user attitude was the most frequently measured outcome, accounting for 44% (n=11) of the studies. Nine studies targeted special populations other than general adult smokers, nearly half (n=4) of which targeted adolescents or young adults. CONCLUSIONS Besides quit rate, the researchers put most focus on user attitude. Use of mobile applications seem to be the mainstream in the future among smart healthcare interventions for smoking cessation. Future research including more keywords related to smart healthcare interventions is needed for a comprehensive understanding of this field.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jiawei Wan ◽  
Yanbei Wu ◽  
Quynhchi Pham ◽  
Robert Li ◽  
Liangli Yu ◽  
...  

Abstract Objectives The aim of this study is to evaluate the effects of rice containing different levels of resistant starch on the gut microbiome using a rodent model. Methods Rice with low resistant starch (0.11%), medium resistant starch (1.07%) and high resistant starch (8.61%) were cooked, grounded into powders and used to formulate diet to represent all the carbohydrates in mice diet that consist of low fat (LF, 10 kcal %) or high fat (HF, 39 kcal %). C57BL/6 mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat and low resistant starch diet (LL); (2) high-fat and low resistant starch diet (HL); (3) low-fat and medium resistant starch diet (LM); (4) high-fat and medium resistant starch diet (HM); (5) low-fat and high resistant starch diet (LH); (6) high-fat and high resistant starch diet (HH). Mice were fed with diets for 8 weeks then gut microbiome composition was determined using 16S rDNA sequencing of cecal contents. Results We found that the gut microbiome was significantly different at different levels of resistant starch (P < 0.01) but not at different fat levels. OTU (operational taxonomic unit) richness was reduced in LF and HF high-resistant groups as compared to others. OTU diversity was reduced in LF and HF medium and high-resistant groups as compared to low-resistant groups. Decreased Firmicutes to Bacteroidetes ratio, which related to lower risk of obesity, was observed in mice fed LF and HF high-resistant diet as compared to others. Moreover, at the family level, LF, HF high-resistant diet mainly increased the abundances of Bacteroidaceae and S24_7, the bacteria positively correlated with SCFAs (short-chain fatty acids) levels. We also observed a decrease in abundances of Odoribacteraceae, Rikenellaceae, Lachnospiraceae, Ruminococcaceae and Desulfovibrionaceae in LF and HF high resistant starch group. Desulfovibrionaceae and genus Odoribecter in Odoribacteraceae are reported to be opportunistic pathogens, Lachnospiraceae, Ruminococcaceae, Odoribacteraceae and Rikenellaceae are associated with obesity. Conclusions Overall, our results demonstrated that resistant starch exerted concentration-dependent effect on the gut microbiome in mice which may have protective effect against obesity. Funding Sources USDA, ARS.


Author(s):  
Jeanne A Ishimwe ◽  
Adesanya A Akinleye ◽  
Ashley C. Johnson ◽  
Michael R Garrett ◽  
Jennifer M. Sasser

Preeclampsia is a progressive hypertensive disorder of pregnancy affecting 2-8% of pregnancies globally. Preexisting chronic hypertension is a major risk factor associated with developing preeclampsia, and growing evidence suggests a role for the gut microbiome in the development of preeclampsia. However, neither alterations in the gut microbiome associated with preeclampsia nor the mechanisms involved are fully understood. In this study, we tested the hypothesis that normal gestational maternal gut microbiome remodeling is impaired in the Dahl salt-sensitive (Dahl S) rat model of superimposed preeclampsia. Gut microbiome profiles of pregnant Dahl S, normal pregnant Sprague Dawley (SD) and matched virgin controls were assessed by 16S rRNA gene sequencing at baseline; during early, middle and late pregnancy; and one-week postpartum. Dahl S rats had significantly higher abundance in Proteobacteria, and multiple genera were significantly different from SD rats at baseline. The pregnant SD displayed a significant increase in Proteobacteria and genera such as Helicobacter, but these were not different between pregnant and virgin Dahl S rats. By late pregnancy, Dahl S rats had significantly lower a-diversity and Firmicutes compared to their virgin Dahl S controls. β-diversity was significantly different among groups (p<0.001). KEGG metabolic pathways including those associated with short-chain fatty acids were different in Dahl S pregnancy but not in SD pregnancy. These results reveal an association between chronic hypertension and gut microbiome dysbiosis which may hinder pregnancy-specific remodeling in the gut microbial composition during superimposed preeclampsia.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ana Ghenciulescu ◽  
Rebecca J. Park ◽  
Philip W. J. Burnet

The human gut microbiome is emerging as a key modulator of homeostasis, with far-reaching implications for various multifactorial diseases, including anorexia nervosa (AN). Despite significant morbidity and mortality, the underlying mechanisms of this eating disorder are poorly understood, but the classical view defining AN as a purely psychiatric condition is increasingly being challenged. Accumulating evidence from comparative studies of AN and healthy fecal microbial composition reveals considerable low divergence and altered taxonomic abundance of the AN gut microbiome. When integrated with preclinical data, these findings point to a significant role of the gut microbiome in AN pathophysiology, via effects on host energy metabolism, intestinal permeability, immune function, appetite, and behavior. While complex causal relationships between genetic risk factors, dietary patterns and microbiome, and their relevance for AN onset and perpetuation have not been fully elucidated, preliminary clinical studies support the use of microbiome-based interventions such as fecal microbiota transplants and probiotics as adjuvants to standard AN therapies. Future research should aim to move from observational to mechanistic, as dissecting how specific microbial taxa interact with the host to impact the development of AN could help design novel therapeutic approaches that more effectively address the severe comorbidities and high relapse rate of this serious disorder.


Sign in / Sign up

Export Citation Format

Share Document