The Depersonalization of Geology

Author(s):  
Naomi Oreskes

Some historians have concluded that plate tectonics caused a change in the standards of the geological community, but the shift in standards of the American scientific community was not so much the result of the development of plate tectonics as it was a larger trend that helped to cause it. Geologists consciously chose to move their discipline away from observational field studies and an inductive epistemic stance toward instrumental and laboratory measurements and a more deductive stance. This shift helps to explain why geologists felt compelled to attend to the demands of geodesists even at the expense of their own data: it was the geodesists’ data, rather than their own, that seemed to be in the vanguard of their science. Geologists at the start of the twentieth century had high hopes for their discipline, and they were not disappointed. The Carnegie Institution’s Geophysical Laboratory became one of the world’s leading locales for laboratory investigations of geological processes, and work done there inspired scientists at other American institutions. At Harvard, for example, Reginald Daly joined forces with Percy Bridgman to raise funds for a high pressure laboratory to determine the physical properties of rocks under conditions prevailing deep within the earth. The application of physics and chemistry to the earth was also advanced at the Carnegie’s Department of Terrestrial Magnetism, where scientists pursued geomagnetism, isotopic dating, and explosion seismology.’ By mid-century, the origins of igneous and metamorphic rocks had been explained, the age of the earth accurately determined, the behavior of rocks under pressure elucidated, and the nature of isostatic compensation resolved, largely through the application of instrumental and laboratory methods. Similar advances occurred in geophysics and oceanography. The work that Bowie and Field instigated in cooperation with the U.S. Navy, and that scientists at places like Wood’s Hole and the Scripps Institution of Oceanography greatly furthered, had grown by the 1950s into a fully fledged science of marine geophysics and oceanography with abundant financial and logistical backing. This work —in gravity, magnetics, bathymetry, acoustics, seismology— relied on instrumentation, much of it borrowed from physics.

2020 ◽  
Author(s):  
Bin Gong ◽  
Chun‘an Tang ◽  
Tiantian Chen ◽  
Zhanjie Qin ◽  
Hua Zhang

<p>Alternative cooling and warming have occurred many times in the history of Earth since its formation. In the meantime, active and quiescent periods of geological activity have also alternatively occurred in this same planet. When Earth became hotter, it shows widespread geological activities, such as LIPs, whereas during the colder stage, it became relatively quiet without too much magma activities. Although various models have been used to explain the trigger for each of these activities, there is no consensus about the fundamental relationships between the thermal cycles and episodically geological processes. The major energy sources for Earth after ~3.8 Ga include primordial heat left from the accretion, differentiation, and the radioactive decay of heat-producing elements. Surface tectonics and magmatism control the transport of heat from the interior to the surface and most surface tectonic features of Earth are the expression of their interior dynamics. Supercontinental breakup and aggregation have occurred for many times in the Earth history, accompanied by episodic cooling and warming on the Earth surface. This breakup and aggregation regime is known as plate tectonics and is characterized by high average surface heat flow fluctuations. Based on the thermodynamic principle, a thermodynamic equilibrium equation describing the earth’s thermal cycles is established. We realized that this thermal cycle may drive Earth itself to evolve, and is the fundamental reason for the periodicity or rhythmicity of geological events such as tectonic movements, orogenies, glacial periods and biological extinctions. Following this principle, we then introduced a project of Wall Chat to compile global data or evidences using a variety of literatures in Geology of early investigations of geological events to explore the relationship between geological events and Earth’s thermal cycles. The data includes the supercontinent cycle, tectonic movement, plate tectonics, extremely hot event, extremely cold event, evaporite, marine red bed, biological evolution and extinction, sea level fluctuation, etc. The Wall Chat reveals that most of the geological events have their relation to the Earth’s thermal cycles. We found that there may exist a good correlation between the occurrence of evaporites and marine red beds and the higher temperature periods, which then provides a new perspective to understand the triggering of these events. The Wall Chat also raises an interest and important question on why are the two Great Oxidation Events (GOE) both related to the two snowball events? We have several clear objectives for the future. First, we are currently cooperating with some of the related institutes of geology to obtain additional evidence data to fill in many of the gaps in the chat; targeted areas include Paleontology, Glaciology, evaporite and red beds. Second, to understand fully the relationship between thermal cycles and, at least, most of the great geological events. Such studies, when sufficiently constrained by event data, should lead to a greatly improved understanding of the earth evolution.</p>


2018 ◽  
Vol 46 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Dan MKenzie

Fifty years ago Jason Morgan and I proposed what is now known as the theory of plate tectonics, which brought together the ideas of continental drift and sea floor spreading into what is probably their final form. I was twenty-five and had just finished my PhD. The success of the theory marked the beginning of a change of emphasis in the Earth sciences, which I have spent the rest of my career exploring. Previously geophysicists had principally been concerned with using ideas and techniques from physics to make measurements. But the success of plate tectonics showed that it could also be used to understand and model geological processes. This essay is concerned with a few such efforts in which I have been involved: determining the temperature structure and rheology of the oceanic and continental lithosphere, and with how mantle convection maintains the plate motions and the long-wavelength part of the Earth's gravity field. It is also concerned with how such research is supported.


Author(s):  
William Lowrie

The Earth’s internal heat is its greatest source of energy. It powers global geological processes such as plate tectonics and the generation of the geomagnetic field. ‘The Earth’s heat’ explains that the internal heat arises from two sources: the decay of radioactive isotopes in crustal rocks and the mantle, and primordial heat left over from the planet’s fiery formation. The internal heat has to find its way out of the Earth. The three basic forms of heat transfer are radiation, conduction, and convection. Heat is also transferred in compositional and phase transitions. Heat transport by conduction is most important in solid regions of the Earth, while thermal convection occurs in the viscoelastic mantle and molten outer core.


2004 ◽  
Vol 10 (5-6) ◽  
pp. 194-196
Author(s):  
V.I. Voloshin ◽  
◽  
A.S. Levenko ◽  
N.N. Peremetchik ◽  
◽  
...  

2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1826
Author(s):  
Mihaela Girtan ◽  
Antje Wittenberg ◽  
Maria Luisa Grilli ◽  
Daniel P. S. de Oliveira ◽  
Chiara Giosuè ◽  
...  

This editorial reports on a thorough analysis of the abundance and scarcity distribution of chemical elements and the minerals they form in the Earth, Sun, and Universe in connection with their number of neutrons and binding energy per nucleon. On one hand, understanding the elements’ formation and their specific properties related to their electronic and nucleonic structure may lead to understanding whether future solutions to replace certain elements or materials for specific technical applications are realistic. On the other hand, finding solutions to the critical availability of some of these elements is an urgent need. Even the analysis of the availability of scarce minerals from European Union sources leads to the suggestion that a wide-ranging approach is essential. These two fundamental assumptions represent also the logical approach that led the European Commission to ask for a multi-disciplinary effort from the scientific community to tackle the challenge of Critical Raw Materials. This editorial is also the story of one of the first fulcrum around which a wide network of material scientists gathered thanks to the support of the funding organization for research and innovation networks, COST (European Cooperation in Science and Technology).


2021 ◽  
Vol 11 (12) ◽  
pp. 5466
Author(s):  
Federico Pasquaré Mariotto ◽  
Varvara Antoniou ◽  
Kyriaki Drymoni ◽  
Fabio Luca Bonali ◽  
Paraskevi Nomikou ◽  
...  

We document and show a state-of-the-art methodology that could allow geoheritage sites (geosites) to become accessible to scientific and non-scientific audiences through immersive and non-immersive virtual reality applications. This is achieved through a dedicated WebGIS platform, particularly handy in communicating geoscience during the COVID-19 era. For this application, we selected nine volcanic outcrops in Santorini, Greece. The latter are mainly associated with several geological processes (e.g., dyking, explosive, and effusive eruptions). In particular, they have been associated with the famous Late Bronze Age (LBA) eruption, which made them ideal for geoheritage popularization objectives since they combine scientific and educational purposes with geotourism applications. Initially, we transformed these stunning volcanological outcrops into geospatial models—the so called virtual outcrops (VOs) here defined as virtual geosites (VGs)—through UAV-based photogrammetry and 3D modeling. In the next step, we uploaded them on an online platform that is fully accessible for Earth science teaching and communication. The nine VGs are currently accessible on a PC, a smartphone, or a tablet. Each one includes a detailed description and plenty of annotations available for the viewers during 3D exploration. We hope this work will be regarded as a forward model application for Earth sciences' popularization and make geoheritage open to the scientific community and the lay public.


1999 ◽  
Vol 354 (1392) ◽  
pp. 1915-1919 ◽  
Author(s):  
Claude Allègre ◽  
Vincent Courtillot

The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so–called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.


Author(s):  
Susan E. Hough ◽  
Stacey S. Martin

Abstract We thank David Wald (Wald, 2021; henceforth, W21) for his interest in our recent article (Hough and Martin, 2021; henceforth, HM21). Although different perspectives are vital in science, we are concerned that W21 misrepresents HM21 as an oblique criticism of the U.S. Geological Survey “Did You Feel It?” (DYFI) system, calling for HM21 to be retracted. Readers who are interested in the issues raised by HM21 and the statements made by us therein are referred to that article. In this brief reply, we respond to specific accusations made by W21 and return to the focus of HM21, calling attention to the extent to which macroseismic data sets and inferences drawn from them can be shaped by a lack of representation among individuals whose observations are available to science. HM21 never questioned the benefits of the community science DYFI project to science. HM21 noted, however, and we reiterate here, that community science also potentially benefits the community. Whether or not it matters for science, if participation in community science projects is unrepresentative across socioeconomic groups, it underscores the need for the scientific community to be proactive in its efforts to reach out to groups that have been underserved by current outreach and education programs. We appreciate this opportunity to continue the important conversation about representation.


2018 ◽  
Vol 45 (2) ◽  
pp. 359-383 ◽  
Author(s):  
B. Sebastian Reiche ◽  
Yih-teen Lee ◽  
David G. Allen

As organizations increasingly fulfill their customer needs by getting their work done globally, there is a pressing need for the scientific community to further advance knowledge on global work, especially in terms of how to better conceptualize and integrate it. A particular opportunity for such development involves the cross-fertilization between the international business (IB) and human resource management (HRM) literatures, which serve as the focal domains to study global work phenomena but have treated global work largely as separate research streams. We therefore edited a special issue to contribute to a more integrative understanding of various aspects of global work across both domains. In this opening article, we review existing research on global work in the multinational enterprise from both IB and HRM perspectives. Subsequently, we present a shared conceptualization of global work that helps integrate theoretical and empirical research in both fields. We then introduce the articles in this special issue, before developing an integrative agenda for future research on global work.


Sign in / Sign up

Export Citation Format

Share Document