scholarly journals ARF2 represses expression of plant GRF transcription factors in a complementary mechanism to microRNA miR396

2021 ◽  
Author(s):  
Matías Beltramino ◽  
Juan Manuel Debernardi ◽  
Antonella Ferela ◽  
Javier F Palatnik

Abstract Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2568-2568
Author(s):  
Jacquelyn Lillis ◽  
Jeffrey Malik ◽  
Tyler A Couch ◽  
Michael Getman ◽  
Laurie A. Steiner

Abstract Setd8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. Setd8 mRNA is expressed ~10-fold higher in erythroid cells than any other cell type (biogps.org) and Setd8 protein levels increase in concert with GATA1 levels during erythroid differentiation of CD34+ HSPCs, suggesting Setd8 may have a role regulating the erythroid transcriptome. Consistent with this hypothesis, erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia and global transcriptomic analyses of sorted populations of E10.5 Sed8 null and control erythroblasts demonstrated a profound defect in transcriptional repression, with 340/345 differentially expressed genes (DEG) expressed at higher levels in the Setd8 null cells than controls (Malik Cell Reports 2017). Primitive erythroblasts mature and enucleate in a semi-synchronous manner in circulation. To better understand the function of Setd8 in regulating the erythroid transcriptome, we extended our transcriptomic analyses by performing RNA-seq in sorted E9.5 Sed8 null (EpoRCre+; Setd8 Δ/Δ) and control (EpoRCre+; Setd8 Δ/+) erythroblasts. The Setd8 null cells failed to repress 20/137 (15%) of the genes that are down regulated in control cells from E9.5 to E10.5. Although relatively few genes were impacted, those genes were enriched for the pathway "Oxidative Stress" (adjusted p-value 0.009) suggesting that Setd8 may regulate specific functions during terminal erythroid maturation. We next compared the DEG in Setd8 null erythroblasts to transcriptomic changes that occur as a cell transcends the hematopoietic hierarchy, gaining lineage specificity while suppressing the multi-lineage transcriptome (GSE14833). A large fraction, 105/345 (~30%), of genes up-regulated in Setd8 null erythroblasts, are also up-regulated in multipotent progenitors compared to proerythroblasts. In contrast, only 16/345 (5%) were also up-regulated in granulocyte-monocyte progenitors suggesting that Setd8 does not repress other lineage restricted signatures. Together, these results suggest that Setd8 regulates repression of the multi-lineage transcriptome during erythroid differentiation from multipotent progenitor cells. To gain insights into how Setd8 regulates the erythroid transcriptome, we performed ATAC-seq (Buenrostro Nature Methods 2013) on sorted populations of erythroblasts from E10.5 Sed8 null and control embryos. Cell number for the Setd8 null samples was limited due to anemia, with ~1000 cells used for each replicate. Setd8 and control replicates were aggregated and accessible regions were identified using MACS2. Regions more accessible in Setd8 null cells were identified by computing a log2 ratio between Setd8 null and control samples using deepTools bamCompare. In addition, we utilized ChIPmentation (Schmidl Nature Methods 2015) to assay H3K27me3 occupancy across the genome of WT E10.5 erythroblasts to identify regions of heterochromatin in maturing erythroblasts. Two replicates were performed using 2.5-5x105 cells per assay, and peak called was done using MACS2. A total of 157 genes were identified that had more accessible chromatin in Setd8 null cells and contained an enrichment for H3K27me3 in WT cells suggesting that these genes should be repressed during normal erythropoiesis. Among these were several DEG that were up-regulated in the Setd8 null cells including Hhex, Cd63, and Gata2. Genomic data integration also identified several additional transcriptional regulators that are active in earlier hematopoietic progenitors but typically silenced during erythroid differentiation including Notch1 and Cebpa. Pathway analysis of the 157 genes identified several stemness-related pathways including "Transcriptional regulation of pluripotent stem cells" and "OCT4, SOX2, NANOG repress genes related to differentiation" (adjusted p-values 0.005 and 0.008, respectively). The chromatin regions that were more accessible in the Setd8 null cells were enriched for the DNA binding motifs of the transcription factor ERG (p-value 1-257), SCL (p-value 1e-193), and NRF1 (p-value 1e-101). Taken together, these data suggest that Setd8 works in concert with erythroid transcription factors to repress the transcriptional network in stem and progenitor cells and establish appropriate patterns of gene expression during erythroid differentiation. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Author(s):  
Marta Melé ◽  
Kaia Mattioli ◽  
William Mallard ◽  
David M Shechner ◽  
Chiara Gerhardinger ◽  
...  

ABSTRACTWhile long intergenic noncoding RNAs (lincRNAs) and mRNAs share similar biogenesis pathways, these transcript classes differ in many regards. LincRNAs are less evolutionarily conserved, less abundant, and more tissue-specific, suggesting that their pre‐ and post-transcriptional regulation is different from that of mRNAs. Here, we perform an in-depth characterization of the features that contribute to lincRNA regulation in multiple human cell lines. We find that lincRNA promoters are depleted of transcription factor (TF) binding sites, yet enriched for some specific factors such as GATA and FOS relative to mRNA promoters. Surprisingly, we find that H3K9me3—a histone modification typically associated with transcriptional repression—is more enriched at the promoters of active lincRNA loci than at those of active mRNAs. Moreover, H3K9me3-marked lincRNA genes are more tissue-specific. The most discriminant differences between lincRNAs and mRNAs involve splicing. LincRNAs are less efficiently spliced, which cannot be explained by differences in U1 binding or the density of exonic splicing enhancers, but may be partially attributed to lower U2AF65 binding and weaker splicing–related motifs. Conversely, the stability of lincRNAs and mRNAs is similar, differing only with regard to the location of stabilizing protein binding sites. Finally, we find that certain transcriptional properties are correlated with higher evolutionary conservation in both DNA and RNA motifs, and are enriched in lincRNAs that have been functionally characterized.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Aileen Patricia Szczepanski ◽  
Lu Wang

AbstractHistone H2AK119 mono-ubiquitination (H2AK119Ub) is a relatively abundant histone modification, mainly catalyzed by the Polycomb Repressive Complex 1 (PRC1) to regulate Polycomb-mediated transcriptional repression of downstream target genes. Consequently, H2AK119Ub can also be dynamically reversed by the BAP1 complex, an evolutionarily conserved multiprotein complex that functions as a general transcriptional activator. In previous studies, it has been reported that the BAP1 complex consists of important biological roles in development, metabolism, and cancer. However, identifying the BAP1 complex’s regulatory mechanisms remains to be elucidated due to its various complex forms and its ability to target non-histone substrates. In this review, we will summarize recent findings that have contributed to the diverse functional role of the BAP1 complex and further discuss the potential in targeting BAP1 for therapeutic use.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara Lago ◽  
Matteo Nadai ◽  
Filippo M. Cernilogar ◽  
Maryam Kazerani ◽  
Helena Domíniguez Moreno ◽  
...  

AbstractCell identity is maintained by activation of cell-specific gene programs, regulated by epigenetic marks, transcription factors and chromatin organization. DNA G-quadruplex (G4)-folded regions in cells were reported to be associated with either increased or decreased transcriptional activity. By G4-ChIP-seq/RNA-seq analysis on liposarcoma cells we confirmed that G4s in promoters are invariably associated with high transcription levels in open chromatin. Comparing G4 presence, location and transcript levels in liposarcoma cells to available data on keratinocytes, we showed that the same promoter sequences of the same genes in the two cell lines had different G4-folding state: high transcript levels consistently associated with G4-folding. Transcription factors AP-1 and SP1, whose binding sites were the most significantly represented in G4-folded sequences, coimmunoprecipitated with their G4-folded promoters. Thus, G4s and their associated transcription factors cooperate to determine cell-specific transcriptional programs, making G4s to strongly emerge as new epigenetic regulators of the transcription machinery.


2012 ◽  
Vol 210 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Florian H. Heidel ◽  
Lars Bullinger ◽  
Patricia Arreba-Tutusaus ◽  
Zhu Wang ◽  
Julia Gaebel ◽  
...  

A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1−/− HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML.


2020 ◽  
Vol 295 (39) ◽  
pp. 13617-13629
Author(s):  
Clément Immarigeon ◽  
Sandra Bernat-Fabre ◽  
Emmanuelle Guillou ◽  
Alexis Verger ◽  
Elodie Prince ◽  
...  

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit–TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


Author(s):  
Joseph S. Rom ◽  
Meaghan T. Hart ◽  
Kevin S. McIver

Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.


Sign in / Sign up

Export Citation Format

Share Document