scholarly journals D5-brane on topological black holes

Author(s):  
Koichi Nagasaki

Abstract Our interest is to find the difference of the behavior between black holes with three different topologies. These black holes have spherical, hyperbolic and toroidal structures. We study in this paper the behavior of a probe D5-branes in this nontrivial black hole spacetime. We would like to find the solution what describe the embedding of a probe D5-brane. This system realizes an “interface” solution, a kind of non-local operators, on the boundary gauge theories. These operators are important to deepen understanding of AdS/CFT correspondence.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Kanato Goto ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract Quantum extremal islands reproduce the unitary Page curve of an evaporating black hole. This has been derived by including replica wormholes in the gravitational path integral, but for the transient, evaporating black holes most relevant to Hawking’s paradox, these wormholes have not been analyzed in any detail. In this paper we study replica wormholes for black holes formed by gravitational collapse in Jackiw-Teitelboim gravity, and confirm that they lead to the island rule for the entropy. The main technical challenge is that replica wormholes rely on a Euclidean path integral, while the quantum extremal islands of an evaporating black hole exist only in Lorentzian signature. Furthermore, the Euclidean equations for the Schwarzian mode are non-local, so it is unclear how to connect to the local, Lorentzian dynamics of an evaporating black hole. We address these issues with Schwinger-Keldysh techniques and show how the non-local equations reduce to the local ‘boundary particle’ description in special cases.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050152
Author(s):  
Koichi Nagasaki

We consider the growth of the action for black hole space–time with a fundamental string. Our interest is to find the difference of the behavior between black holes with three different topologies in the scenario of complexity-action conjecture. These black holes have positive, negative and zero curvatures. We would like to calculate the action growth of these systems with a probe fundamental string according to the complexity-action conjecture. We find that for the case where the black holes have the toroidal horizon structure this probe string behaves very differently from the other two cases.


Author(s):  
Gleb Aminov ◽  
Alba Grassi ◽  
Yasuyuki Hatsuda

AbstractWe present new analytic results on black hole perturbation theory. Our results are based on a novel relation to four-dimensional $${\mathcal {N}}=2$$ N = 2 supersymmetric gauge theories. We propose an exact version of Bohr-Sommerfeld quantization conditions on quasinormal mode frequencies in terms of the Nekrasov partition function in a particular phase of the $$\Omega $$ Ω -background. Our quantization conditions also enable us to find exact expressions of eigenvalues of spin-weighted spheroidal harmonics. We test the validity of our conjecture by comparing against known numerical results for Kerr black holes as well as for Schwarzschild black holes. Some extensions are also discussed.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Sérgio V. M. C. B. Xavier ◽  
Carolina L. Benone ◽  
Luís C. B. Crispino

AbstractWe investigate the absorption of planar massless scalar waves by a charged rotating stringy black hole, namely a Kerr–Sen black hole. We compute numerically the absorption cross section and compare our results with those of the Kerr–Newman black hole, a classical general relativity solution. In order to better compare both charged black holes, we define the ratio of the black hole charge to the extreme charge as Q. We conclude that Kerr–Sen and Kerr–Newman black holes have a similar absorption cross section, with the difference increasing for higher values of Q.


2020 ◽  
Vol 496 (1) ◽  
pp. 497-503 ◽  
Author(s):  
Menglei Zhou ◽  
Askar B Abdikamalov ◽  
Dimitry Ayzenberg ◽  
Cosimo Bambi ◽  
Victoria Grinberg ◽  
...  

ABSTRACT The analysis of the thermal spectrum of geometrically thin and optically thick accretion discs of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximate the disc as infinitesimally thin, while in reality the disc thickness is finite and increases as the black hole mass accretion rate increases. Here we present an XSPEC model to calculate the multitemperature blackbody spectrum of a thin accretion disc of finite thickness around a Kerr black hole. We test our new model with an RXTE observation of the black hole binary GRS 1915+105. We find that the spin value inferred with the new model is slightly higher than the spin value obtained with a model with an infinitesimally thin disc, but the difference is small and the effect is currently subdominant with respect to other sources of uncertainties in the final spin measurement.


2009 ◽  
Vol 5 (S261) ◽  
pp. 260-268
Author(s):  
M. J. Valtonen ◽  
S. Mikkola ◽  
D. Merritt ◽  
A. Gopakumar ◽  
H. J. Lehto ◽  
...  

AbstractSupermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6⋅1010M⊙. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)⋅1010M⊙primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.


2011 ◽  
Vol 26 (39) ◽  
pp. 2923-2950 ◽  
Author(s):  
MARCO OLIVARES ◽  
JOEL SAAVEDRA ◽  
CARLOS LEIVA ◽  
JOSÉ R. VILLANUEVA

We study the motion of relativistic, electrically charged point particles in the background of charged black holes with nontrivial asymptotic behavior. We compute the exact trajectories of massive particles and express them in terms of elliptic Jacobi functions. As a result, we obtain a detailed description of particles orbits in the gravitational field of Reissner–Nordström (anti)-de Sitter black hole, depending of their charge, mass and energy.


2005 ◽  
Vol 14 (08) ◽  
pp. 1321-1331 ◽  
Author(s):  
XIAN-HUI GE ◽  
YOU-GEN SHEN

Quantum non-cloning theorem and a thought experiment are discussed for charged black holes whose global structure exhibits an event and a Cauchy horizon. We take Reissner–Norström black holes and two-dimensional dilaton black holes as concrete examples. The results show that the quantum non-cloning theorem and the black hole complementarity are far from consistent inside the inner horizon. The relevance of this work to non-local measurements is briefly discussed.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530054 ◽  
Author(s):  
Anosh Joseph

We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that nonperturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.


Sign in / Sign up

Export Citation Format

Share Document