scholarly journals Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Richard Kelwick ◽  
Luca Ricci ◽  
Soo Mei Chee ◽  
David Bell ◽  
Alexander J Webb ◽  
...  

Abstract The polyhydroxyalkanoates (PHAs) are microbially-produced biopolymers that could potentially be used as sustainable alternatives to oil-derived plastics. However, PHAs are currently more expensive to produce than oil-derived plastics. Therefore, more efficient production processes would be desirable. Cell-free metabolic engineering strategies have already been used to optimize several biosynthetic pathways and we envisioned that cell-free strategies could be used for optimizing PHAs biosynthetic pathways. To this end, we developed several Escherichia coli cell-free systems for in vitro prototyping PHAs biosynthetic operons, and also for screening relevant metabolite recycling enzymes. Furthermore, we customized our cell-free reactions through the addition of whey permeate, an industrial waste that has been previously used to optimize in vivo PHAs production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by approximately 50%. In cell-free transcription–translation prototyping reactions, gas chromatography–mass spectrometry quantification of cell-free 3-hydroxybutyrate (3HB) production revealed differences between the activities of the Native ΔPhaC_C319A (1.18 ± 0.39 µM), C104 ΔPhaC_C319A (4.62 ± 1.31 µM) and C101 ΔPhaC_C319A (2.65 ± 1.27 µM) phaCAB operons that were tested. Interestingly, the most active operon, C104 produced higher levels of PHAs (or PHAs monomers) than the Native phaCAB operon in both in vitro and in vivo assays. Coupled cell-free biotransformation/transcription–translation reactions produced greater yields of 3HB (32.87 ± 6.58 µM), and these reactions were also used to characterize a Clostridium propionicum Acetyl-CoA recycling enzyme. Together, these data demonstrate that cell-free approaches complement in vivo workflows for identifying additional strategies for optimizing PHAs production.

2017 ◽  
Author(s):  
Richard Kelwick ◽  
Luca Ricci ◽  
Soo Mei Chee ◽  
David Bell ◽  
Alexander J. Webb ◽  
...  

ABSTRACTThe polyhydroxyalkanoates are a group of microbially-produced biopolymers that have been proposed as sustainable alternatives to several oil-derived plastics. However, polyhydroxyalkanoates are currently more expensive to produce than oil-derived plastics and therefore, more efficient production processes would be desirable. Cell-free transcription-translation-based metabolic engineering strategies have been previously used to optimise several different biosynthetic pathways but not the polyhydroxyalkanoates biosynthetic pathways. Here we have developed several Escherichia coli cell-free transcription-translation-based systems for in vitro prototyping of polyhydroxyalkanoates biosynthetic operons, and also for screening relevant metabolite recycling enzymes. These cell-free transcription-translation reactions were customised through the addition of whey permeate, an industrial waste that has been previously used as a low-cost feedstock for optimising in vivo polyhydroxyalkanoates production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by ~20% compared to control reactions that did not include whey permeate. An analysis of pH in our cell-free reactions suggests that the observed increase in GFPmut3b production was likely through enhanced ATP generation, as a consequence of the glycolytic processing of lactose present in whey permeate. We also found that whey permeate enhanced cell-free reactions produced ~3μM (R)-3HB-CoA, whilst, coupled cell-free biotransformation/transcription-translation reactions produced a ten-fold greater yield of (R)-3HB-CoA. These reactions were also used to characterise a Clostridium propionicum propionyl CoA transferase enzyme that can recycle Acetyl-CoA. Together our data demonstrate that cell-free approaches can be used to complement in vivo workflows for identifying additional strategies for optimising polyhydroxyalkanoates production.


2017 ◽  
Vol 17 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Cristiene Costa Carneiro ◽  
Aroldo Vieira de Moraes-Filho ◽  
Amanda Silva Fernandes ◽  
Suzana da Costa Santos ◽  
Daniela de Melo e Silva ◽  
...  
Keyword(s):  

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 155
Author(s):  
Jannatul Nasma Rupa Moni ◽  
Md. Adnan ◽  
Abu Montakim Tareq ◽  
Md. Imtiazul Kabir ◽  
A.S.M. Ali Reza ◽  
...  

Syzygium fruticosum (SF), a valuable Bangladeshi fruit, is considered an alternative therapeutic agent. Mainly, seeds are used as nutritional phytotherapy to ease physical and mental status by preventing chronic diseases. Here, we scrutinized the S. fruticosum seed’s fundamental importance in traditional medicine by following an integrated approach combining in vivo, in vitro, and in silico studies. The SF was fractionated with different solvents, and the ethyl acetate fraction of SF (EaF-SF) was further studied. Mice treated with EaF-SF (200 and 400 mg/kg) manifested anxiolysis evidenced by higher exploration in elevated plus maze and hole board tests. Similarly, a dose-dependent drop of immobility time in a forced swimming test ensured significant anti-depressant activity. Moreover, higher dose treatment exposed reduced exploratory behaviour resembling decreased movement and prolonged sleeping latency with a quick onset of sleep during the open field and thiopental-induced sleeping tests, respectively. In parallel, EaF-SF significantly (p < 0.001) and dose-dependently suppressed acetic acid and formalin-induced pain in mice. Also, a noteworthy anti-inflammatory activity and a substantial (p < 0.01) clot lysis activity (thrombolytic) was observed. Gas chromatography-mass spectrometry (GC–MS) analysis resulted in 49 bioactive compounds. Among them, 12 bioactive compounds with Lipinski’s rule and safety confirmation showed strong binding affinity (molecular docking) against the receptors of each model used. To conclude, the S. fruticosum seed is a prospective source of health-promoting effects that can be an excellent candidate for preventing degenerative diseases.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 976
Author(s):  
Natalia Langa-Lomba ◽  
Laura Buzón-Durán ◽  
Pablo Martín-Ramos ◽  
José Casanova-Gascón ◽  
Jesús Martín-Gil ◽  
...  

In the work presented herein, we analyze the efficacy of three basic substances that comply with European Regulation (EC) No 1107/2009, namely chitosan, horsetail (Equisetum arvense L.) and nettle (Urtica dioica L.), for the control of grapevine trunk diseases (GTDs) in organic farming. The E. arvense and U. dioica aqueous extracts, prepared according to SANCO/12386/2013 and SANTE/11809/2016, have been studied by gas chromatography–mass spectrometry (GC-MS), identifying their main active constituents. The three basic substances, either alone or in combination (forming conjugate complexes), have been tested in vitro against eight Botryosphaeriaceae species, and in vivo, in grafted plants artificially inoculated with Neofusicoccum parvum and Diplodia seriata. A clear synergistic behavior between chitosan and the two plant extracts has been observed in the mycelial growth inhibition tests (resulting in EC90 values as low as 208 μg·mL−1 for some of the isolates), and statistically significant differences have been found in terms of vascular necroses lengths between treated and non-treated plants, providing further evidence of aforementioned synergism in the case of D. seriata. The reported data supports the possibility of extending the applications of these three basic substances in Viticulture beyond the treatment of mildew.


2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


Author(s):  
Anjali P ◽  
Vimalavathini R

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which mainly targets synovial membrane during its disease pathogenesis. Available therapeutic drugs for the treatment of RA provide only symptomatic relief and are associated with severe side effects. Herbal plants comprise many active biological compounds that cure the disease with minimal adverse effects. Pyrenacantha volubilis is a climber and member of Icacinaceae family. Gas chromatography- mass spectrometry (GC-MS) analysis of ethanolic extracts of leaves of Pyrenacantha volubilis (EEPV) reveals the presence of 2-isopropyl-5-methylcyclohexyl 3-(1-(4- chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate and 1-naphthalenepropanol, alpha-ethyldecahydro-5- (hydroxymethyl)-alpha,5,8A-trimethyl-2-methyl phytoconstitutents. Hence these compounds were docked with various pathological mediators of RA using Autodock 4.2. The docking results unveils that these compounds had better binding energy against inflammatory, oxidative stress and receptor for advanced glycation end products (RAGE) mediators that plays a pivotal role in the progression of RA. However, this study warrants further in- vitro and in-vivo studies to be carried out to establish the anti-inflammatory and anti-arthritic activity of selected phytoconstitutents.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2017 ◽  
Vol 68 ◽  
pp. 83-90 ◽  
Author(s):  
Gabriel Vinderola ◽  
Miguel Gueimonde ◽  
Carlos Gomez-Gallego ◽  
Lucrecia Delfederico ◽  
Seppo Salminen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document