scholarly journals Observing plasticity of the auditory system: Volumetric decreases along with increased functional connectivity in aspiring professional musicians

Author(s):  
Elisabeth Wenger ◽  
Eleftheria Papadaki ◽  
André Werner ◽  
Simone Kühn ◽  
Ulman Lindenberger

Abstract Playing music relies on several sensory systems and the motor system, and poses strong demands on control processes, hence, offering an excellent model to study how experience can mold brain structure and function. While most studies on neural correlates of music expertise rely on cross-sectional comparisons, here we compared within-person changes over time in aspiring professionals intensely preparing for an entrance exam at a University of the Arts to skilled amateur musicians not preparing for a music exam. In the group of aspiring professionals, we observed gray-matter volume decrements in left planum polare, posterior insula, and left inferior frontal orbital gyrus over a period of about six months that were absent among the amateur musicians. At the same time, the left planum polare, the largest cluster of structural change, showed increasing functional connectivity with left and right auditory cortex, left precentral gyrus, left supplementary motor cortex, left and right postcentral gyrus, and left cingulate cortex, all regions previously identified to relate to music expertise. In line with the expansion–renormalization pattern of brain plasticity (Wenger, Brozzoli, et al. 2017), the aspiring professionals might have been in the selection and refinement period of plastic change.

2020 ◽  
Author(s):  
Elisabeth Wenger ◽  
Eleftheria Papadaki ◽  
André Werner ◽  
Simone Kühn ◽  
Ulman Lindenberger

AbstractPlaying music relies on several sensory systems and the motor system, and poses strong demands on control processes, hence, offering an excellent model to study how experience can mold brain structure and function. While most studies on neural correlates of music expertise rely on cross-sectional comparisons, here we compared within-person changes over time in aspiring professionals intensely preparing for an entrance exam at a University of the Arts to skilled amateur musicians not preparing for a music exam. In the group of aspiring professionals, we observed gray-matter volume decrements in left planum polare, posterior insula, and left inferior frontal orbital gyrus over a period of about six months that were absent among the amateur musicians. At the same time, the left planum polare, the largest cluster of structural change, showed increasing functional connectivity with left and right auditory cortex, left precentral gyrus, left supplementary motor cortex, left and right postcentral gyrus, and left cingulate cortex, all regions previously identified to relate to music expertise. In line with the expansion–renormalization pattern of brain plasticity (Wenger, Brozzoli, et al. 2017), the aspiring professionals might have been in the selection and refinement period of plastic change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adam C. Raikes ◽  
Natalie S. Dailey ◽  
Brittany Forbeck ◽  
Anna Alkozei ◽  
William D. S. Killgore

Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness.Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study.Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05).Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chia-Chun Hung ◽  
Yi-Hsuan Liu ◽  
Chu-Chung Huang ◽  
Cheng-Ying Chou ◽  
Chun-Ming Chen ◽  
...  

Abstract Ketamine has been used for medical purposes, most typically as an anesthetic, and recent studies support its use in the treatment of depression. However, ketamine tends to be abused by adolescents and young adults. In the current study, we examined the effects of early ketamine exposure on brain structure and function. We employed MRI to assess the effects of ketamine abuse on cerebral gray matter volume (GMV) and functional connectivity (FC) in 34 users and 19 non-users, employing covariates. Ketamine users were categorized as adolescent-onset and adult-onset based on when they were first exposed to ketamine. Imaging data were processed by published routines in SPM and AFNI. The results revealed lower GMV in the left precuneus in ketamine users, with a larger decrease in the adolescent-onset group. The results from a seed-based correlation analysis show that both ketamine groups had higher functional connectivity between left precuneus (seed) and right precuneus than the control group. Compared to controls, ketamine users showed decreased GMV in the right insula, left inferior parietal lobule, left dorsolateral prefrontal cortex/superior frontal gyrus, and left medial orbitofrontal cortex. These preliminary results characterize the effects of ketamine misuse on brain structure and function and highlight the influence of earlier exposure to ketamine on the development of the brain. The precuneus, a structure of central importance to cerebral functional organization, may be particularly vulnerable to the influences of early ketamine exposure. How these structural and functional brain changes may relate to the cognitive and affective deficits remains to be determined with a large cohort of participants.


2021 ◽  
Vol 13 ◽  
Author(s):  
Célia Domingos ◽  
Maria Picó-Pérez ◽  
Ricardo Magalhães ◽  
Mariana Moreira ◽  
Nuno Sousa ◽  
...  

Several studies using neuroimaging techniques have established a positive relationship between physical activity (PA) and brain structure and function in older populations. However, the use of subjective measures of PA and the lack of multimodal neuroimaging approaches have limited the understanding of this association. This study aims to explore the associations between PA and brain structure and function by objectively evaluating PA. Community-dwelling cognitively healthy older adults (without diagnosed cognitive, neurological or degenerative disease) were recruited from local health centers and local gyms. In a cross-sectional design, participants were evaluated regarding cognitive, clinical, anthropometric, physical performance, and lifestyle characteristics. A 3 T magnetic resonance imaging (MRI) was performed for structural and functional brain measures. PA time and level was assessed via a Xiaomi Mi Band 2® worn for 15 consecutive days. Participants (n = 110, after inclusion/exclusion criteria and completion of all evaluations) were 58 females (56%), with an average age of 68.42 years old (SD = 3.12), most were active. Multiple regression analysis revealed that higher time spent in vigorous PA associated with larger left parahippocampal gyrus and right hippocampus volumes. Furthermore, the analysis of the functional connectome indicated a greater functional connectivity (FC) between the frontal gyrus, cingulate gyrus, occipital inferior lobe for light, moderate, and total PA time, and sedentary time associated with lower FC in the same networks. Overall, the structural and functional findings may provide evidence on the relevant association between PA and brain health in aging.


Author(s):  
Katherine A Koenig ◽  
Se-Hong Oh ◽  
Melissa R Stasko ◽  
Elizabeth C Roth ◽  
H Gerry Taylor ◽  
...  

Abstract Down syndrome is the phenotypic consequence of trisomy 21, with clinical presentation including both neurodevelopmental and neurodegenerative components. Although the intellectual disability typically displayed by individuals with Down syndrome is generally global, it also involves disproportionate deficits in hippocampally-mediated cognitive processes. Hippocampal dysfunction may also relate to Alzheimer’s disease-type pathology, which can appear in as early as the first decade of life and becomes universal by age 40. Using 7-tesla MRI of the brain, we present an assessment of the structure and function of the hippocampus in 34 individuals with Down syndrome (mean age 24.5 years ± 6.5) and 27 age- and sex-matched typically developing healthy controls. In addition to increased whole-brain mean cortical thickness and lateral ventricle volumes (p < 1.0 × 10−4), individuals with Down syndrome showed selective volume reductions in bilateral hippocampal subfields CA1, dentate gyrus, and tail (p < 0.005). In the group with Down syndrome, bilateral hippocampi showed widespread reductions in the strength of functional connectivity, predominately to frontal regions (p < 0.02). Age was not related to hippocampal volumes or functional connectivity measures in either group, but both groups showed similar relationships of age to whole-brain volume measures (p < 0.05). Finally, we performed an exploratory analysis of a subgroup of individuals with Down syndrome with both imaging and neuropsychological assessments. This analysis indicated that measures of spatial memory were related to mean cortical thickness, total gray matter volume, and right hemisphere hippocampal subfield volumes (p < 0.02). This work provides a first demonstration of the usefulness of high-field MRI to detect subtle differences in structure and function of the hippocampus in individuals with Down syndrome, and suggests the potential for development of MRI-derived measures as surrogate markers of drug efficacy in pharmacological studies designed to investigate enhancement of cognitive function.


2021 ◽  
Author(s):  
Laura M. Hack ◽  
Jacob Brawer ◽  
Megan Chesnut ◽  
Xue Zhang ◽  
Max Wintermark ◽  
...  

AbstractA significant number of individuals experience physical, cognitive, and mental health symptoms in the months after acute infection with SARS-CoV-2, the virus that causes COVID-19. This study assessed depressive and anxious symptoms, cognition, and brain structure and function in participants with symptomatic COVID-19 confirmed by PCR testing (n=100) approximately three months following infection, leveraging self-report questionnaires, objective neurocognitive testing, and structural and functional neuroimaging data. Preliminary results demonstrated that over 1/5 of our cohort endorsed clinically significant depressive and/or anxious symptoms, and >40% of participants had cognitive impairment on objective testing across multiple domains, consistent with ‘brain-fog’. While depression and one domain of quality of life (physical functioning) were significantly different between hospitalized and non-hospitalized participants, anxiety, cognitive impairment, and most domains of functioning were not, suggesting that the severity of SARS-CoV-2 infection does not necessarily relate to the severity of neuropsychiatric outcomes and impaired functioning in the months after infection. Furthermore, we found that the majority of participants in a subset of our cohort who completed structural and functional neuroimaging (n=15) had smaller olfactory bulbs and sulci in conjunction with anosmia. We also showed that this subset of participants had dysfunction in attention network functional connectivity and ventromedial prefrontal cortex seed-based functional connectivity. These functional imaging dysfunctions have been observed previously in depression and correlated with levels of inflammation. Our results support and extend previous findings in the literature concerning the neuropsychiatric sequelae associated with long COVID. Ongoing data collection and analyses within this cohort will allow for a more comprehensive understanding of the longitudinal relationships between neuropsychiatric symptoms, neurocognitive performance, brain structure and function, and inflammatory and immune profiles.


2019 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Malon Van den Hof ◽  
Anne Marleen ter Haar ◽  
Matthan W.A. Caan ◽  
Rene Spijker ◽  
Johanna H. van der Lee ◽  
...  

ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.


2020 ◽  
Author(s):  
Ashley N. Nielsen ◽  
Caterina Gratton ◽  
Soyoung Kim ◽  
Jessica A. Church ◽  
Kevin J. Black ◽  
...  

AbstractTourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics. TS is complex, with symptoms that involve sensory, motor, and top-down control processes and that fluctuate over the course of development. While many have studied atypical brain structure and function associated with TS, the neural substrates supporting the complex range and time-course of symptoms is largely understudied. Here, we used functional connectivity MRI to examine functional networks across the whole-brain in children and adults with TS. To investigate the functional neuroanatomy of childhood and adulthood TS, we separately considered the sets of connections within each functional network and those between each pair of functional networks. We tested whether developmental stage (child, adult), diagnosis (TS, control), or an interaction between these factors was present among these connections. We found that developmental changes for most functional networks in TS were unaltered (i.e., developmental differences in TS were similar to those in typically developing children and adults). However, there were several within-network and cross-network connections that exhibited either “divergent” or “attenuated” development in TS. Connections involving the somatomotor, cingulo-opercular, auditory, dorsal attention, and default mode networks diverged from typical development in TS, demonstrating enhanced functional connectivity in adulthood TS. In contrast, connections involving the basal ganglia, thalamus, cerebellum, auditory, visual, reward, and ventral attention networks showed attenuated developmental differences in TS. These results suggest that adulthood TS is characterized by increased functional connectivity among functional networks that support cognitive control and attention, which may be implicated in suppressing, producing, and attending to tics. In contrast, subcortical systems that have been implicated in the initiation and production of tics may be immature in adulthood TS. Jointly, our results reveal how several cortical and subcortical functional networks interact and differ across development in TS.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


Author(s):  
Κατερίνα Μανιαδάκη

The aim of this paper is to provide evidence regarding the necessity and the effectiveness of early intervention for ADHD, by reviewing the most important international early intervention programs for ADHD and by presenting a relevant program implemented in Greece, based on the multi-level approach in developmental psychopathology. These programs are underpinned theoretically by the biopsychosocial epigenetic model which claims that ADHD is not just the outcome of structural and functional neurobiological deficits but results from the dynamic interplay among genetic, neurophysiological, neurochemical, and environmental factors, affecting brain structure and function early in the process of development. Early intervention focuses on those processes that take place very early in development and have a causal relationship with ADHD, with the aim of modifying the underlying neurophysiology and producing generalized long-lasting change. The efficacy of early intervention mainly lies in the fact that it takes place during a period when brain plasticity is great. Plasticity is an intrinsic property of the brain that ensures dynamic modifications at multiple levels of neural organization, allowing the brain to process, encode, and implement new knowledge. Although this neuronal development is to a great extent genetically programmed, it is widely acknowledged that environment also plays a major role through the process of epigenesis by moderating gene expression with subsequent alterations in brain structure and function and allowing even modification of certain deficient structures.


Sign in / Sign up

Export Citation Format

Share Document