8-Formylophiopogonanone B induces ROS-mediated apoptosis in nasopharyngeal carcinoma CNE-1 cells

2021 ◽  
Author(s):  
Ya-jing Zhang ◽  
Zhen-lin Mu ◽  
Ping Deng ◽  
Yi-dan Liang ◽  
Li-chuan Wu ◽  
...  

Abstract Cancer is one of the leading causes of death in the world. It is very important to find drugs with high efficiency, low toxicity, and low side effects for the treatment of cancer. Flavonoids and their derivatives with broad biological functions have been recognized as anti-tumor chemicals. 8-Formylophiopogonanone B (8-FOB), a naturally existed homoisoflavonoids with rarely known biological functions, needs pharmacological evaluation. In order to explore the possible anti-tumor action of 8-FOB, we used six types of tumor cells to evaluate in vitro effects of this agent on cell viability and tested the effects on clone formation ability, scratching wound-healing, and apoptosis. In an attempt to elucidate the mechanism of pharmacological action, we examined 8-FOB-induced intracellular oxidative stress and -disrupted mitochondrial function. Results suggested that 8-FOB could suppress tumor cell viability, inhibit cell migration and invasion, induce apoptosis, and elicit intracellular ROS production. Among these six types of tumor cells, the nasopharyngeal carcinoma CNE-1 cells were the most sensitive cancer cells to 8-FOB treatment. Intracellular ROS production played a pivotal role in the anti-tumor action of 8-FOB. Our present study is the first to document that 8-FOB has anti-tumor activity in vitro and increases intracellular ROS production, which might be responsible for its anti-tumor action. The anti-tumor pharmacological effect of 8-FOB is worthy of further investigation.

2011 ◽  
Vol 26 (S2) ◽  
pp. 908-908
Author(s):  
H.R. Sadeghnia ◽  
S.H. Mousavi ◽  
Z. Tayarani-Najaran ◽  
M. Asghari

The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders.Nigella sativa L. and its active component, thymoquinone (TQ) have been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h and then subjected to SGD for 6 or 18 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2’,7’-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (p < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (p < 0.001). N. sativa (250 μg/ml, p < 0.01) and TQ (2.34, 4.68, 9.37 μM, p < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.


Author(s):  
Qiang Xue ◽  
Yang Yang ◽  
Linlin Yang ◽  
Xiaodi Yan ◽  
Zihao Shen ◽  
...  

Background: Exosomes are well-known natural nanovesicles, that represent one of the recently discovered modes of intercellular communication due to their ability to transmit cellular components. Exosomes have been reported to have potential as natural vectors for carrying functional small RNAs and delivering chemotherapeutic agents to diseased cells. In this study, we aimed to investigate the role of exosomes in carrying miRNA for targeting tumor cells.Methods: We present a novel method for engineering exosomes with functional miR-317b-5b to target tumor cells. MiR-317b-5b exerts its anti-tumor function via its expression in tumors. RT-qPCR was performed to assess the levels of miR-371b-5p, FUT-4. Western blot was performed to measure the levels of CD9, CD81, and FUT-4 proteins. Confocal microscopy was used to observe the internalization of miR-317b-5b in tumor cells. CCK-8, EdU, flow cytometry, wound-healing migration and transwell assays were performed to evaluate cell viability, proliferation, migration, and invasion, respectively.Results: Our findings illustrated that miR-317b-5b-loaded engineered exosomes were internalized by tumor cells. MiR-317b-5b was overexpressed in tumor cells treated with miR-317b-5b-loaded engineered exosomes. The internalization of miR-317b-5b in tumor cells was accompanied by changes of cell viability, proliferation, apoptosis, and migratory and invasive capability. We found that miR-317b-5b-loaded engineered exosomes were presence in tumor tissue sections and miR-317b-5b was overexpressed in tumor tissues of osteosarcoma tumor-bearing mice infected with miR-317b-5b-loaded engineered exosomes. MiR-317b-5b-loaded engineered exosomes had the anti-tumor efficiency in vivo.Conclusion: Our findings show that miR-317b-5b-loaded engineered exosomes can be used as nanocarriers to deliver drug molecules such as miR-317b-5b both in vitro and in vivo to exert its anti-tumor functions.


2020 ◽  
Vol 20 (8) ◽  
pp. 624-637 ◽  
Author(s):  
Qiong Wu ◽  
Manlin Xiang ◽  
Kun Wang ◽  
Zhen Chen ◽  
Lu Long ◽  
...  

Background: Increasing evidence has shown that p62 plays an important role in tumorigenesis. However, relatively little is known about the association between p62 and tumor invasion and metastasis; in addition, its role in NPC (nasopharyngeal carcinoma, NPC) has been rarely investigated. Objective: To investigate the effect of p62 on tumorigenesis and metastasis in nasopharyngeal carcinoma. Methods: Western blotting, immunofluorescent staining and immunohistochemistry were used to evaluate p62 protein expression. Subsequently, cell viability, colony formation, migration, invasion and autophagy assays were performed. anti-p62 autoantibodies in sera were detected by ELISA. These data were correlated with clinicopathological parameters. Results: We confirmed that p62 was significantly up-regulated in NPC tissues. Furthermore, high expression of p62 was observed in NPC cell lines, and especially in the highly metastatic 5-8F cells. In vitro, down-regulation of p62 inhibited proliferation, clone forming ability, autophagy, migration, and invasion in 5-8F cells, whereas p62 overexpression resulted in the opposite effects in 6-10B cells. Moreover, we confirmed that p62 promotes NPC cell proliferation, migration, and invasion by activating ERK (extracellular signal-regulated kinase, ERK). Clinical analysis indicated that high p62 expression correlates with lymph node and distant metastasis (P<0.05). Serum anti-p62 autoantibodies were increased in NPC patients and levels were associated with metastasis. Conclusion : Our data establish p62 targeting ERK as potential determinant in the NPC, which supplies a new pathway to treat NPC. Furthermore, p62 is a potential biomarker which might be closely related to the tumorigenesis and metastasis in NPC.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Giovanni S. Offeddu ◽  
Cynthia Hajal ◽  
Colleen R. Foley ◽  
Zhengpeng Wan ◽  
Lina Ibrahim ◽  
...  

AbstractThe glycocalyx on tumor cells has been recently identified as an important driver for cancer progression, possibly providing critical opportunities for treatment. Metastasis, in particular, is often the limiting step in the survival to cancer, yet our understanding of how tumor cells escape the vascular system to initiate metastatic sites remains limited. Using an in vitro model of the human microvasculature, we assess here the importance of the tumor and vascular glycocalyces during tumor cell extravasation. Through selective manipulation of individual components of the glycocalyx, we reveal a mechanism whereby tumor cells prepare an adhesive vascular niche by depositing components of the glycocalyx along the endothelium. Accumulated hyaluronic acid shed by tumor cells subsequently mediates adhesion to the endothelium via the glycoprotein CD44. Trans-endothelial migration and invasion into the stroma occurs through binding of the isoform CD44v to components of the sub-endothelial extra-cellular matrix. Targeting of the hyaluronic acid-CD44 glycocalyx complex results in significant reduction in the extravasation of tumor cells. These studies provide evidence of tumor cells repurposing the glycocalyx to promote adhesive interactions leading to cancer progression. Such glycocalyx-mediated mechanisms may be therapeutically targeted to hinder metastasis and improve patient survival.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2017 ◽  
Vol 44 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Shiho Yamadera ◽  
Yuya Nakamura ◽  
Masahiro Inagaki ◽  
Isao Ohsawa ◽  
Hiromichi Gotoh ◽  
...  

Aim: To examine the effects of vitamin E-coated dialyzer on oxidative stress in vitro. Methods: A dialyzer with a synthetic polymer membrane (APS-11SA) and vitamin E-coated dialyzer (VPS-11SA) were connected to a blood tubing line, and U937 cells were circulated in the device. The circulating fluid was collected at 1, 2, 5, 10, 25, and 50 cycles, which are estimated numbers of passes through the dialyzer. Intracellular reactive oxygen species (ROS) production, malondialdehyde (MDA), and Cu/Zn-superoxide dismutase (SOD) were quantified. Results: Intracellular ROS production was increased in the first cycle by APS-11SA and was decreased throughout the experiment by VPS-11SA. Intracellular ROS production in the VPS-11SA device was lower, and MDA levels were decreased. MDA levels were lower during VPS-11SA processing than during APS-11SA processing. Cu/Zn-SOD levels remained unchanged. Conclusion: Our results highlight anti-oxidative-stress effects of a vitamin E-coated dialyzer.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1061-1069
Author(s):  
Jingjing Zhang ◽  
Yuanyuan Yang ◽  
Hongyu Liu ◽  
Hongyi Hu

Abstract Nasopharyngeal carcinoma (NPC) is characterized by high morbidity and morality, especially in Southern China. Transcription factors intensively participate in the initiation and development of NPC. This study aimed to investigate the roles of Src-1 in NPC. mRNA level was determined by qRT-PCR. Western blot was carried out for the protein level. CCK-8 assay was performed to determine cell viability, colony formation for NPC cell proliferation, and transwell for cell migration and invasion ability. The results showed Steroid receptor coactivator 1 (Src-1) was overexpressed in SNE-2 and 6-10B. The expression of Src-1 and SP2 was in positive correlation. Overexpression of Src-1 promoted the cell viability, colony formation, and epithelial–mesenchymal transition (EMT), manifested by the increase of migration and invasion ability, while knockdown of Src-1 exerted opposite effects. Additionally, knockdown or overexpression of SP2 reversed the effects of overexpressed or downregulated Src-1, which was reversed by the depletion of SP2. Moreover, Src-1 interacted with SP2 to regulate EMT-related genes such as E-cad, N-cad, Vimentin, and ZEB1, and proliferation- and apoptosis-related genes, such as bax, cytochrome c, and cleaved caspase3 and bcl-2. Thus, blocking the interaction between Src-1 and SP2 may be a therapeutic target for inhibiting the metastasis of NPC.


2021 ◽  
pp. 1-13
Author(s):  
Jing Shen ◽  
Qiang Shu

<b><i>Purpose:</i></b> Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms’ tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. <b><i>Methods:</i></b> Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. <b><i>Results:</i></b> MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. <b><i>Conclusions:</i></b> The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.


2021 ◽  
Author(s):  
zhengtuan guo ◽  
qiang yv ◽  
chunlin miao ◽  
wenan ge ◽  
peng li

Wilms tumor is the most common type of renal tumor in children. MicroRNAs (miRNA) are small non-coding RNAs that play crucial regulatory roles in tumorigenesis. We aimed to study the expression profile and function of miR-27a-5p in Wilms tumor. MiR-27a-5p expression was downregulated in human Wilms tumor tissues. Functionally, overexpression of miR-27a-5p promoted cell apoptosis of Wilms tumor cells. Furthermore, upregulated miR-27a-5p delayed xenograft Wilms tumor tumorigenesis in vivo. Bioinformatics analysis predicted miR-27-5p directly targeted to the 3’-untranslated region (UTR) of PBOV1 and luciferase reporter assay confirmed the interaction between miR-27a-5p and PBOV1. The function of PBOV1 in Wilms tumor was evaluated in vitro and knockdown of PBOV1 dampened cell migration. In addition, overexpression of PBOV1 antagonized the tumor-suppressive effect of miR-27a-5p in Wilms tumor cells. Collectively, our findings reveal the regulatory axis of miR-27-5p/PBOV1 in Wilms tumor and miR-27a-5p might serve as a novel therapeutic target in Wilms tumor.


Sign in / Sign up

Export Citation Format

Share Document