Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change?

2019 ◽  
Vol 39 (11) ◽  
pp. 1783-1805 ◽  
Author(s):  
D Sperlich ◽  
C T Chang ◽  
J Peñuelas ◽  
S Sabaté

Abstract Global warming is raising concerns about the acclimatory capacity of trees and forests, especially in Mediterranean-type ecosystems. The sensitivity of photosynthesis to temperature is a key uncertainty for projecting the magnitude of terrestrial feedbacks on future climate change. While boreal, temperate and tropical species have been comparatively well investigated, our study provides the first comprehensive overview of the seasonal acclimatory responses of photosynthesis and its component processes to temperature in four Mediterranean climax species under natural conditions. We quantified seasonal changes in the responses of net photosynthesis (Anet), stomatal conductance (gs), mesophyllic conductance (gm) and electron-transport rate (Jcf), and investigated their sensitivity to drought and temperature stress in sunlit and shaded leaves of four Mediterranean tree species (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.). Sunlit leaves, but not shaded leaves, showed a pronounced seasonality in the temperature responses of Anet, gs, gm and Jcf. All four species and variables showed a remarkably dynamic and consistent acclimation of the thermal optimum (Topt), reaching peaks in summer ~29–32 °C. Changes in the shape of the response curves were, however, highly species-specific. Under severe drought, Topt of all variables were on average 22–29% lower. This was accompanied by narrower response curves above all in P. halepensis, reducing the optimal range for photosynthesis to the cooler morning or evening periods. Wider temperature-response curves and less strict stomatal control under severe drought were accompanied by wilting and drought-induced leaf shedding in Q. ilex and Q. pubescens and by additional branch dieback in A. unedo. Mild winter conditions led to a high Topt (~19.1–22.2 °C), benefitting the evergreen species, especially P. halepensis. Seasonal acclimation of Anet was explained better by gs and gm being less pronounced in Jcf. Drought was thus a key factor, in addition to growth temperature, to explain seasonal acclimation of photosynthesis. Severe drought periods may exceed more frequently the high acclimatory capacity of Mediterranean trees to high ambient temperatures, which could lead to reduced growth, increased leaf shedding and, for some species such as A. unedo, increased mortality risk.

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 816
Author(s):  
Danijela Markovic ◽  
Jörg Freyhof ◽  
Oskar Kärcher

Thermal response curves that depict the probability of occurrence along a thermal gradient are used to derive various species’ thermal properties and abilities to cope with warming. However, different thermal responses can be expected for different portions of a species range. We focus on differences in thermal response curves (TRCs) and thermal niche requirements for four freshwater fishes (Coregonus sardinella, Pungitius pungitius, Rutilus rutilus, Salvelinus alpinus) native to Europe at (1) the global and (2) European continental scale. European ranges captured only a portion of the global thermal range with major differences in the minimum (Tmin), maximum (Tmax) and average temperature (Tav) of the respective distributions. Further investigations of the model-derived preferred temperature (Tpref), warming tolerance (WT = Tmax − Tpref), safety margin (SM = Tpref − Tav) and the future climatic impact showed substantially differing results. All considered thermal properties either were under- or overestimated at the European level. Our results highlight that, although continental analyses have an impressive spatial extent, they might deliver misleading estimates of species thermal niches and future climate change impacts, if they do not cover the full species ranges. Studies and management actions should therefore favor whole global range distribution data for analyzing species responses to environmental gradients.


2020 ◽  
Author(s):  
Miao Qi ◽  
Xiaodi Liu ◽  
Yibo Li ◽  
He Song ◽  
Feng Zhang ◽  
...  

AbstractAbnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding, and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration and plant growth stage. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasselling than pre-tasselling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.


2019 ◽  
Vol 66 (2) ◽  
pp. 178-190 ◽  
Author(s):  
E Silvério ◽  
J Duque-Lazo ◽  
R M Navarro-Cerrillo ◽  
F Pereña ◽  
G Palacios-Rodríguez

Abstract It is predicted that changes in climate will lead to episodes of large forest decline and mortality. Therefore, the distributions of forest plantations and natural stands might already be facing such impacts. We selected the most arid zone of south-eastern Europe (eastern Andalusia) to assess how the distributions of Pinus halepensis Miller. and Pinus pinaster Aiton forest plantations and natural stands cope with climate change and to determine whether natural or planted distributions would be more stable under future climate-change scenarios. We used presence-point locations from natural distributions, obtained from the third Spanish National Forest Inventory, to develop ensemble species distribution models. The forecast predicted a slight increase in the potential distribution of both species by 2040, with a subsequent drastic decrease until 2099. Pinus halepensis had larger current and future potential distributions than P. pinaster but a slightly greater decrease with time in the potential distribution than that of P. pinaster. On the other hand, the natural and planted distributions of P. halepensis were more vulnerable to future climate change scenarios than those of P. pinaster. Natural populations will likely be more resilient to climate change than planted populations.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 534 ◽  
Author(s):  
Thompson ◽  
Simpson ◽  
Whitman ◽  
Barber ◽  
Parisien

Drought is usually the precursor to large wildfires in northwestern boreal Canada, a region with both large wildfire potential and extensive peatland cover. Fire is a contagious process, and given weather conducive to burning, wildfires may be naturally limited by the connectivity of fuels and the connectivity of landscapes such as peatlands. Boreal peatlands fragment landscapes when wet and connect them when dry. The aim of this paper is to construct a framework by which the hydrological dynamics of boreal peatlands can be incorporated into standard wildfire likelihood models, in this case the Canadian Burn-P3 model. We computed hydrologically dynamic vegetation cover for peatlands (37% of the study area) on a real landscape in the Canadian boreal plain, corresponding to varying water table levels representing wet, moderate, and severely dry fuel moisture and hydrological conditions. Despite constant atmospheric drivers of fire spread (air temperature, humidity, and wind speed) between drought scenarios, fire activity increased 6-fold in moderate drought relative to a low drought baseline; severe (1 in 40 years) drought scenarios drove fires into previously fire-restrictive environments. Fire size increased 5-fold during moderate drought conditions and a further 20%–25% during severe drought. Future climate change is projected to lead to an increase in the incidence of severe drought in boreal forests, leading to increases in burned area due to increasing fire frequency and size where peatlands are most abundant. Future climate change in regions where peatlands have historically acted as important barriers to fire spread may amplify ongoing increases in fire activity already observed in Western North American forests.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2097
Author(s):  
Zhaoqi Zeng ◽  
Wenxiang Wu ◽  
Yamei Li ◽  
Yang Zhou ◽  
Zhengtao Zhang ◽  
...  

Drought and extreme precipitation events can have major environmental and socioeconomic impacts. Yet, how drought and wetness are changing in China in the context of climate change is still under debate. Here, the standardized precipitation evapotranspiration index (SPEI) was calculated based on high-quality and more densely distributed daily meteorological observation data from 655 stations across China during the period of 1965–2017. National and regional trends in drought and wetness and their various characteristics, including intensity, duration, frequency, and percentage of area affected, were investigated at multiple timescales. We found that (1) China as a whole has undergone a significant (p < 0.01, trend significant at the level of 0.01) wetting trend, with an annual SPEI increase of 0.5 per decade from 1965 to 2017. A seasonal wetting trend was also observed, with summer being particularly significant (p < 0.01). (2) Regionally, each subregion also showed a wetting trend during the study period except for southwest China, and these wetting trends were significant in the western region of northwest China (p < 0.05, trend significant at the level of 0.05), the Tibetan Plateau (p < 0.05), and eastern China (p = 0.06). (3) Decadal trends in drought and wetness intensity, frequency, duration, and affected areas indicated that the drought events also became more severe and more frequent in the last two decades, and the areas showing drying trends were mainly located in southwest China (especially for the autumn drought) and the southwestern parts of eastern northwest China (spring drought). Our results highlight the fact that although a wetting trend was observed in most regions of China, the frequent occurrence of severe drought in southwest China and the southwestern parts of eastern northwest China still present a considerable threat to both the environment and society. Therefore, how to effectively coordinate the allocation of regional water resources to cope with drought risk under future climate change will be particularly important.


2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Sweet ◽  
Mark Bulling ◽  
Dorsa Varshavi ◽  
Gavin R. Lloyd ◽  
Andris Jankevics ◽  
...  

Coral reefs are suffering unprecedented declines in health state on a global scale. Some have suggested that human assisted evolution or assisted gene flow may now be necessary to effectively restore reefs and pre-condition them for future climate change. An understanding of the key metabolic processes in corals, including under stressed conditions, would greatly facilitate the effective application of such interventions. To date, however, there has been little research on corals at this level, particularly regarding studies of the metabolome of Scleractinian corals. Here, the metabolomic profiles [measured using 1H nuclear magnetic resonance spectroscopy (1H NMR) and ultra-high-performance liquid chromatography-mass spectrometry (LC-MS)] of two dominant reef building corals, Acropora hyacinthus and A. millepora, from two distinct geographical locations (Australia and Singapore) were characterized. We assessed how an acute temperature stress (an increase of 3.25°C ± 0.28 from ambient control levels over 8 days), shifted the corals’ baseline metabolomic profiles. Regardless of the profiling method utilized, metabolomic signatures of coral colonies were significantly distinct between coral species, a result supporting previous work. However, this strong species-specific metabolomic signature appeared to mask any changes resulting from the acute heat stress. On closer examination, we were able to discriminate between control and temperature stressed groups using a partial least squares discriminant analysis classification model (PLSDA). However, in all cases “late” components needed to be selected (i.e., 7 and 8 instead of 1 and 2), suggesting any treatment effect was small, relative to other sources of variation. This highlights the importance of pre-characterizing the coral colony metabolomes, and of factoring that knowledge into any experimental design that seeks to understand the apparently subtle metabolic effects of acute heat stress on adult corals. Further research is therefore needed to decouple these apparent individual and species-level metabolomic responses to climate change in corals.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Haoxiang Zhao ◽  
Xiaoqing Xian ◽  
Zihua Zhao ◽  
Guifen Zhang ◽  
Wanxue Liu ◽  
...  

Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People’s Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.


2012 ◽  
Vol 9 (5) ◽  
pp. 6649-6688 ◽  
Author(s):  
P. Sun ◽  
Z. Yu ◽  
S. Liu ◽  
X. Wei ◽  
J. Wang ◽  
...  

Abstract. Considerable work has been done to examine the relationship between environmental constraints and vegetation activities represented by the remote sensing-based Normalized Difference Vegetation Index (NDVI). However, the relationships along either environmental or vegetation type gradients are rarely examined. The aim of this paper was to identify the vegetation types that are potentially susceptible to climate change through examining the interaction between vegetation activity and water deficit. We selected 12 major vegetation types along the north-south transect of Eastern China (NSTEC), examined their time trends from 1982 to 2006 with respect to climate change, vegetation activity and water deficit. The results showed that all vegetation types experienced warming during the study period, and the majority of them experienced precipitation decline. Warming and growing season water deficit exert counteracting controls on vegetation activity. Our study found insignificant greening trends in the northernmost cold temperate coniferous forest (CTCF), three temperate herbaceous types including the meadow steppe (TMS), grass steppe (TGS) and grassland (TG), where the growing season warming exerted more than offset effect on vegetation activity (phenology) than growing season water deficit. For the three temperate forest including the coniferous (TCF), mixed (TMF) and deciduous-broadleaved (TDBF), growing season water deficit was the main constraint on vegetation activity. Differently, the growing season browning in subtropical or tropical forests of coniferous (STCF), deciduous-broadleaved (SDBF) and evergreen-broadleaved (SEBF) and subtropical grasslands (STG) were likely attributed to decline in sunshine duration due to increased summer cloudiness. Poor water status in TDS, TG, TMS and severe drought in TGS have been identified by using growing season water deficit index (GWDI), suggested these ecosystems were subjected to severe progressing drought that may create greening trend reversal in future. The emerging water deficit in CTCF, TCF and SDBF suggested their rising susceptibility to future climate change.


2013 ◽  
Vol 17 (23) ◽  
pp. 1-26 ◽  
Author(s):  
Tim Bardsley ◽  
Andrew Wood ◽  
Mike Hobbins ◽  
Tracie Kirkham ◽  
Laura Briefer ◽  
...  

Abstract Assessing climate change risk to municipal water supplies is often conducted by hydrologic modeling specific to local watersheds and infrastructure to ensure that outputs are compatible with existing planning frameworks and processes. This study leverages the modeling capacity of an operational National Weather Service River Forecast Center to explore the potential impacts of future climate-driven hydrologic changes on factors important to planning at the Salt Lake City Department of Public Utilities (SLC). Hydrologic modeling results for the study area align with prior research in showing that temperature changes alone will lead to earlier runoff and reduced runoff volume. The sensitivity of average annual flow to temperature varies significantly between watersheds, averaging −3.8% °F−1 and ranging from −1.8% to −6.5% flow reduction per degree Fahrenheit of warming. The largest flow reductions occur during the high water demand months of May–September. Precipitation drives hydrologic response more strongly than temperature, with each 1% precipitation change producing an average 1.9% runoff change of the same sign. This paper explores the consequences of climate change for the reliability of SLC's water supply system using scenarios that include hydrologic changes in average conditions, severe drought scenarios, and future water demand test cases. The most significant water management impacts will be earlier and reduced runoff volume, which threaten the system's ability to maintain adequate streamflow and storage to meet late-summer water demands.


2020 ◽  
Vol 3 ◽  
Author(s):  
Antonio Gazol ◽  
J. Julio Camarero ◽  
Gabriel Sangüesa-Barreda ◽  
Xavier Serra-Maluquer ◽  
Raúl Sánchez-Salguero ◽  
...  

The increase in frequency and intensity of droughts due to climate change might threaten forests under stress levels causing dieback and mortality episodes. Thus, deciphering how tree species from within a region respond to drought along environmental gradients should help us to understand forest vulnerability to climate change. To enlighten contrasting drought responses of dominant tree species, we reconstructed vegetation activity using Normalized Difference Vegetation Index (NDVI) and radial growth using tree-ring width series. We studied six tree species, three angiosperms (Fagus sylvatica, Quercus humilis, and Quercus ilex) and three gymnosperms (Pinus sylvestris, Pinus nigra, and Pinus halepensis), inhabiting a Mediterranean region in north-eastern Spain. We investigated if reduced growth resilience and increased growth synchrony after successive droughts (1986, 1989, 2005, and 2012): (i) were related to cumulative drought stress and (ii) preceded forest dieback in dry sites as compared to wet sites. In 2016, dieback affected Q. ilex and P. sylvestris stands in dry sites showing lower growth rates and NDVI. No dieback symptoms were observed in other species from dry (P. nigra, P. halepensis) or wet (F. sylvatica, Q. humilis, P. sylvestris) sites. Hot and dry summer conditions constrained growth and reduced NDVI. During 2005, a severe drought affected all species, but growth drops were more marked in dry places. All species were able to recover after extreme droughts, albeit angiosperms displayed lower than expected values of growth after the 2012 drought. Growth synchrony was higher in dry sites than in wet sites, and the differences were higher after the 2005 drought. This study reveals that the sensitivity of tree species to drought in species inhabiting the same region is species dependent, and it is contingent on local conditions with higher effects in dry sites than in wet sites. We describe how a cumulative impact of successive droughts increases growth synchrony and triggers the occurrence of dieback events in Mediterranean forests.


Sign in / Sign up

Export Citation Format

Share Document