scholarly journals A19 The impact of HIV-1 on the evolution of Mycobacterium tuberculosis

2018 ◽  
Vol 4 (suppl_1) ◽  
Author(s):  
Anastasia Koch ◽  
Daniela Brites ◽  
David Stucki ◽  
Joanna C Evans ◽  
Ronnett Seldon ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lorena Leticia Peixoto de Lima ◽  
Allysson Quintino Tenório de Oliveira ◽  
Tuane Carolina Ferreira Moura ◽  
Ednelza da Silva Graça Amoras ◽  
Sandra Souza Lima ◽  
...  

Abstract Background The HIV-1 epidemic is still considered a global public health problem, but great advances have been made in fighting it by antiretroviral therapy (ART). ART has a considerable impact on viral replication and host immunity. The production of type I interferon (IFN) is key to the innate immune response to viral infections. The STING and cGAS proteins have proven roles in the antiviral cascade. The present study aimed to evaluate the impact of ART on innate immunity, which was represented by STING and cGAS gene expression and plasma IFN-α level. Methods This cohort study evaluated a group of 33 individuals who were initially naïve to therapy and who were treated at a reference center and reassessed 12 months after starting ART. Gene expression levels and viral load were evaluated by real-time PCR, CD4+ and CD8+ T lymphocyte counts by flow cytometry, and IFN-α level by enzyme-linked immunosorbent assay. Results From before to after ART, the CD4+ T cell count and the CD4+/CD8+ ratio significantly increased (p < 0.0001), the CD8+ T cell count slightly decreased, and viral load decreased to undetectable levels in most of the group (84.85%). The expression of STING and cGAS significantly decreased (p = 0.0034 and p = 0.0001, respectively) after the use of ART, but IFN-α did not (p = 0.1558). Among the markers evaluated, the only markers that showed a correlation with each other were STING and CD4+ T at the time of the first collection. Conclusions ART provided immune recovery and viral suppression to the studied group and indirectly downregulated the STING and cGAS genes. In contrast, ART did not influence IFN-α. The expression of STING and cGAS was not correlated with the plasma level of IFN-α, which suggests that there is another pathway regulating this cytokine in addition to the STING–cGAS pathway.


2021 ◽  
Vol 9 (1) ◽  
pp. 147
Author(s):  
Ana Santos-Pereira ◽  
Carlos Magalhães ◽  
Pedro M. M. Araújo ◽  
Nuno S. Osório

The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral “mutant cloud” is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.


2009 ◽  
Vol 207 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Nicoletta Casartelli ◽  
Florence Guivel-Benhassine ◽  
Romain Bouziat ◽  
Samantha Brandler ◽  
Olivier Schwartz ◽  
...  

The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic anti–human immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1–specific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


AIDS ◽  
2001 ◽  
Vol 15 (17) ◽  
pp. 2293-2301 ◽  
Author(s):  
Jaap Goudsmit ◽  
Gerrit Jan Weverling ◽  
Lia van der Hoek ◽  
Anthony de Ronde ◽  
Frank Miedema ◽  
...  

2015 ◽  
Vol 89 (20) ◽  
pp. 10303-10318 ◽  
Author(s):  
Justine E. Sunshine ◽  
Brendan B. Larsen ◽  
Brandon Maust ◽  
Ellie Casey ◽  
Wenje Deng ◽  
...  

ABSTRACTTo understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24gagwere generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r= 0.43;P= 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack.IMPORTANCERapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Prats ◽  
Ignacio Martínez-Zalacaín ◽  
Beatriz Mothe ◽  
Eugènia Negredo ◽  
Núria Pérez-Álvarez ◽  
...  

AbstractIntegrase strand transfer inhibitors (INSTI) are a main component of the current antiretroviral regimens recommended for treatment of HIV infection. However, little is known about the impact of INSTI on neurocognition and neuroimaging. We developed a prospective observational trial to evaluate the effects of INSTI-based antiretroviral therapy on comprehensive brain outcomes (cognitive, functional, and imaging) according to the time since HIV-1 acquisition. We recruited men living with HIV who initiated antiretroviral therapy with INSTI < 3 months since the estimated date of HIV-1 acquisition (n = 12) and > 6 months since estimated date of HIV-1 acquisition (n = 15). We also recruited a group of matched seronegative individuals (n = 15). Assessments were performed at baseline (before initiation of therapy in HIV arms) and at weeks 4 and 48. Baseline cognitive functioning was comparable between the arms. At week 48, we did not find cognitive differences between starting therapy with INSTI earlier than 3 months or later than 6 months after acquisition of HIV-1 infection. Functional status was poorer in individuals diagnosed earlier. This effect recovered 48 weeks after initiation of therapy. Regarding brain imaging, we found that men living with HIV initiating antiretroviral therapy later experienced a greater decrease in medial orbitofrontal cortex over time, with expected negative repercussions for decision-making tasks.


2012 ◽  
Vol 19 (5) ◽  
pp. 723-730 ◽  
Author(s):  
Xiaoman Li ◽  
Wei Xu ◽  
Sidong Xiong

ABSTRACTTuberculosis (TB) caused byMycobacterium tuberculosisremains a major infectious disease worldwide. Moreover, latentM. tuberculosisinfection is more likely to progress to active TB and eventually leads to death when HIV infection is involved. Thus, it is urgent to develop a novel TB vaccine with immunogenicity to bothM. tuberculosisand HIV. In this study, four uncharacterized T cell epitopes from MPT64, Ag85A, Ag85B, and TB10.4 antigens ofM. tuberculosiswere predicted, and HIV-1-derived p24, an immunodominant protein that can induce protective responses to HIV-1, was used as an immunogenic backbone.M. tuberculosisepitopes were incorporated separately into the gene backbone of p24, forming a pP24-Mtb DNA vaccine. We demonstrated that pP24-Mtb immunization induced a strongM. tuberculosis-specific cellular response as evidenced by T cell proliferation, cytotoxicity, and elevated frequency of gamma interferon (IFN-γ)-secreting T cells. Interestingly, a p24-specific cellular response and high levels of p24-specific IgG were also induced by pP24-Mtb immunization. When the protective effect was assessed after mycobacterial challenge, pP24-Mtb vaccination significantly reduced tissue bacterial loads and profoundly attenuated the mycobacterial infection-related lung inflammation and injury. Our findings demonstrated that the pP24-Mtb tuberculosis vaccine confers effective protection against mycobacterial challenge with simultaneously elicited robust immune responses to HIV-1, which may provide clues for developing novel vaccines to prevent dual infections.


Sign in / Sign up

Export Citation Format

Share Document