scholarly journals Sensitivity of Bacterial and Fungal Plant Pathogens to the Lytic Peptides, MSI-99, Magainin II, and Cecropin B

2002 ◽  
Vol 15 (7) ◽  
pp. 701-708 ◽  
Author(s):  
Ali R. Alan ◽  
Elizabeth D. Earle

In vitro and leaf disk assays of bacterial and fungal plant pathogens were conducted using three cationic lytic peptides, MSI-99, magainin II (MII), and cecropin B (CB). Growth of bacterial organisms was retarded or completely inhibited by low concentrations of these lytic peptides. The peptides also significantly reduced germination of fungal spores and growth of mycelia; however, higher concentrations of peptides were needed to inhibit fungal growth compared with those needed to inhibit bacteria. The relative efficacy of the peptides depended on the microorganism tested, but CB was the most inhibitory to the majority of the bacteria and fungi assayed. MSI-99, a synthetic derivative of MII with increased positive charge, showed equal or two- to fivefold higher antibacterial activity compared to MII in the in vitro assays. MSI-99 was also superior to MII against the oomycete, Phytophthora infestans but was slightly inferior to MII in assays with the true fungi, Penicillium digitatum and Alternaria solani. In the leaf disk assays, pretreating spores of Alternaria solani and Phytophthora infestans with the peptides at concentrations as low as 10 μg per ml led to significant reductions in the size of early blight lesions and prevented development of any late blight lesions on tomato leaf disks. Our results from in vitro and leaf disk assays suggest that MSI-99 can be used as a transgene to generate tomato lines with enhanced resistance to bacterial and fungal diseases of this crop.

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 730
Author(s):  
Parisa Rahimi Tamandegani ◽  
Tamás Marik ◽  
Doustmorad Zafari ◽  
Dóra Balázs ◽  
Csaba Vágvölgyi ◽  
...  

Trichoderma species are widely used as biofungicides for the control of fungal plant pathogens. Several studies have been performed to identify the main genes and compounds involved in Trichoderma–plant–microbial pathogen cross-talks. However, there is not much information about the exact mechanism of this profitable interaction. Peptaibols secreted mainly by Trichoderma species are linear, 5–20 amino acid residue long, non-ribosomally synthesized peptides rich in α-amino isobutyric acid, which seem to be effective in Trichoderma–plant pathogenic fungus interactions. In the present study, reversed phase (RP) high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) mass spectrometry (MS) was used to detect peptaibol profiles of Trichoderma strains during interactions with fungal plant pathogens. MS investigations of the crude extracts deriving from in vitro confrontations of Trichoderma asperellum and T. longibrachiatum with different plant pathogenic fungi (Fusarium moniliforme, F. culmorum, F. graminearum, F. oxysporum species complex, Alternaria solani and Rhizoctonia solani) were performed to get a better insight into the role of these non-ribosomal antimicrobial peptides. The results revealed an increase in the total amount of peptaibols produced during the interactions, as well as some differences in the peptaibol profiles between the confrontational and control tests. Detection of the expression level of the peptaibol synthetase tex1 by qRT-PCR showed a significant increase in T. asperellum/R. solani interaction in comparison to the control. In conclusion, the interaction with plant pathogens highly influenced the peptaibol production of the examined Trichoderma strains.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6905 ◽  
Author(s):  
Elena Maria Colombo ◽  
Cristina Pizzatti ◽  
Andrea Kunova ◽  
Claudio Gardana ◽  
Marco Saracchi ◽  
...  

Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects ofFusariumstrain diversity (N= 5) and culture media (N= 6) on the identification of biological control activity ofStreptomycesstrains (N= 20) againstFusariumpathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media,Fusariumstrain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r= 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays ofStreptomycesBCAs against fungal pathogens.


2019 ◽  
Vol 109 (3) ◽  
pp. 402-408 ◽  
Author(s):  
Andrew E. Sathoff ◽  
Siva Velivelli ◽  
Dilip M. Shah ◽  
Deborah A. Samac

Plant defensins are small, cysteine-rich antimicrobial peptides. These peptides have previously been shown to primarily inhibit the growth of fungal plant pathogens. Plant defensins have a γ-core motif, defined as GXCX3-9C, which is required for their antifungal activity. To evaluate plant defensins as a potential control for a problematic agricultural disease (alfalfa crown rot), short, chemically synthesized peptides containing γ-core motif sequences were screened for activity against numerous crown rot pathogens. These peptides showed both antifungal and, surprisingly, antibacterial activity. Core motif peptides from Medicago truncatula defensins (MtDef4 and MtDef5) displayed high activity against both plant and human bacterial pathogens in vitro. Full-length defensins had higher antimicrobial activity compared with the peptides containing their predictive γ-core motifs. These results show the future promise for controlling a wide array of economically important fungal and bacterial plant pathogens through the transgenic expression of a plant defensin. They also suggest that plant defensins may be an untapped reservoir for development of therapeutic compounds for combating human and animal pathogens.


2012 ◽  
Vol 58 (10) ◽  
pp. 1202-1211 ◽  
Author(s):  
Luiz H. Rosa ◽  
Nurhayat Tabanca ◽  
Natascha Techen ◽  
Zhiqiang Pan ◽  
David E. Wedge ◽  
...  

The endophytic fungal assemblages associated with Smallanthus sonchifolius (Poepp.) H. Rob. and Smallanthus uvedalius (L.) Mack. ex Small growing in vitro autotrophic cultures and in the greenhouse were identified and evaluated for their ability to produce bioactive compounds. A total of 25 isolates were recovered that were genetically closely related to species of the genera Bionectria , Cladosporium , Colletotrichum , Fusarium , Gibberella , Hypocrea , Lecythophora , Nigrospora , Plectosphaerella , and Trichoderma . The endophytic assemblages of S. sonchifolius presented a greater diversity than the group isolated from S. uvedalius and demonstrated the presence of dominant generalist fungi. Extracts of all fungi were screened against the fungal plant pathogens. Ten extracts (41.6%) displayed antifungal activities; some of them had a broad antifungal activity. The phylotypes Lecythophora sp. 1, Lecythophora sp. 2, and Fusarium oxysporum were isolated from in vitro autotrophic cultures and displayed antifungal activity. The presence of bioactive endophytic fungi within S. sonchifolius and S. uvedalius suggests an ecological advantage against pathogenic attacks. This study revealed reduced numbers of endophytes in association with both Smallanthus species in controlled cultivation conditions compared with the endophytic communities of hosts collected in the wild environments. Even as reduced endophytic communities, these fungi continue to provide chemical protection for the host.


2009 ◽  
Vol 76 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Pey-Shynan Jan ◽  
Hsu-Yuang Huang ◽  
Hueih-Min Chen

ABSTRACT The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.


Author(s):  
V. A. Chavan ◽  
S. G. Borkar ◽  
Nivedita A Kadam

Evolution of fungicide resistance in plant pathogens and cross resistance to other fungicides in such pathogens is one of major concerns in sustainable plant disease management. Frequent and unwarranted use of fungicides to control plant diseases not only pollute the earth soil and environment, but also causes the development of fungicide resistance in the plant pathogens, which makes it difficult to manage the plant disease. In India, particularly in western Maharashtra, Alternaria leaf blight pathogen of tomato developed resistance and cross resistance to various fungicides. How these fungicide resistant isolates grow in the different fungicidal environment is reported in the present investigation. Eight different fungicide resistant isolates of Alternaria solani responsible for causing leaf blight in tomato crop were tested for their growth potential, under in vitro condition, on the potato-dextrose-agar(PDA) growth media amended with different fungicides viz. Dithane M-45, Blitox, Kavach, Ridomil, Nativo, Bavistin, Captaf and Score. Different fungicide resistant isolates showed different pattern of growth i.e. complete inhibition of growth, reduced growth or enhancement of growth on different fungicide amended PDA media. The growth of Dithane M-45 resistant isolate was enhanced by fungicide Kavach and Bavistin while reduced by fungicide Blitox. The growth of this fungicide resistant isolate was completely inhibited by fungicide Ridomil, Nativo, Captaf and Score. The maximum enhancement of growth was for Nativo resistant isolate to Bavistin amended PDA media. Bavistin resistant isolate had decreased growth on all fungicides amended PDA media. The minimum reduction in growth was recorded for Kavach resistant isolate on Dithane M-45 fungicide amended PDA media. The growth rate (cm/day) of these fungicide resistant isolates was maximum at 220C temperature as compared to 25 and 300C temperature on the routine PDA growth medium. Captaf resistant isolate produced more growth followed by Nativo, Dithane M-45 and score resistant isolate. The minimum growth was observed for Blitox resistant isolate. As the temperature increases, the growth rate decreased. The growth of fungicide resistant isolates was favored by neutral pH of 7.0 and decreased toward the acidic and alkaline condition. Captaf resistant isolate produced more growth followed by Nativo and score resistant isolates. The minimum growth was produced by Blitox resistant isolate. More growth of fungicide resistant Alternaria isolate means production of more inoculum for disease initiation and spread which is favored at 22 °C temperature and further indicate which fungicide should be used to restrict/manage the growth of particular Alternaria fungicide resistant isolate.


2021 ◽  
Author(s):  
Vignesh Murthy ◽  
VedhaHari BodethalaNarayanan ◽  
MubarakAli Davoodbasha ◽  
MadhanShankar ShankarRamakrishanan

Abstract A novel strain of Bacillus isolated from rhizosphere has shown to be excellent biocontrol agents against various plant pathogens. In this study, a first report of a Bacillus strain NKMV-3 which effectively controlling Alternaria solani, which cause the Early Blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as Bacillus velezensis NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes namely Iturin C, Surfactin A, Fengycin B and D were confirmed through gene amplification. In addition, lipopetides was also confirmed through liquid chromatography. The extract showed inhibitory effect against A.solani in-vitro and detached tomato leaf assays. Bacillus velezensis strain NKMV-3 based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.


2018 ◽  
Vol 29 (1) ◽  
pp. 38
Author(s):  
ADEL HAMDAN ALWAN

This study was conducted to investigate the effect of two types of Ricinus communis plant tissue culture extract on two fungal plant pathogens Phytophthora infestans and Fusarium solani. The result showed detected several secondary metabolites component from the plant extracts like Flavonoid, Saponins, Tannins and Glycosides; and the high effect of the alcoholic extract of the plant on the fungi with 91.10% and 89.90% respectively, the percentages of inhibition are significantly increased by increasing the concentration of the extract.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Lydia G. Mugao ◽  
Phyllis W. Muturi ◽  
Bernard M. Gichimu ◽  
Ezekiel K. Njoroge

Tomato production is constrained by fungal diseases especially the early and late blight caused by Alternaria solani and Phytophthora infestans, respectively. Control of the two diseases is usually by use of synthetic fungicides which have a long residue effect and also contribute to environmental pollution. Innovative use of biocontrols may offer an eco-friendly and more sustainable solution. This study tested the in vitro efficacy of crude extracts and essential oils of ginger, garlic, tick berry, and Mexican marigold in inhibition of radial growth of A. solani and P. infestans. Extraction of the crude extracts was done using distilled water, ethanol, and methanol solvents, while essential oils were extracted using the dry steam distillation method. The extracts and essential oils were used to amend the growth media of the test pathogens before introducing the precultured pathogens. Sterile distilled water and synthetic fungicide, Ridomil Gold®, were used as positive and negative controls, respectively. Fungal growth inhibition was determined by measuring the radial growth of the test pathogens. Both the crude extracts and the essential oils portrayed some efficacy against the test pathogens. Garlic crude extracts were found to be the most effective, while ethanol was the most suitable extraction solvent. Essential oils were more effective in restricting the pathogen growth than crude extracts. Ginger and garlic oil was found to be as effective as the synthetic fungicide, and thus it was concluded that the two plants have strong antifungal properties with high potential of being utilized as biofungicides. However, effective utilization of these products in farmers’ fields may require industrial formulation to improve their efficiency.


1996 ◽  
Vol 42 (7) ◽  
pp. 690-700 ◽  
Author(s):  
Paige E. Axelrood ◽  
Alison M. Clarke ◽  
Reed Radley ◽  
S. Janet V. Zemcov

A microbial culture collection composed of 1820 bacterial strains, including 298 actinomycete strains, was established from the roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings harvested from conifer nurseries and forest sites. Two hundred and thirty-four strains inhibited the growth of Fusarium, Cylindrocarpon, and (or) Pythium spp. in in vitro assays. A significantly greater proportion of bacterial strains from actinomycete genera exhibited antifungal properties compared with bacterial strains from nonactinomycete genera. Eighty-nine percent of identified inhibitory strains were Streptomyces, Streptoverticillium, Bacillus, Pseudomonas, or Burkholderia species. The actinomycete species were isolated almost exclusively from forest seedlings. Recovery of inhibitory strains representing 29 microbial species was enhanced using a variety of methods to isolate microorganisms from the roots of seedlings from nursery and forest sites. Bacterial strains (including actinomycete strains) with antifungal activity were tested for in vitro growth inhibition of six clinical human bacterial pathogens (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Forty-eight percent of the tested strains inhibited one or more human pathogens. Inhibitory activity towards fungal and bacterial pathogens was strain specific, not species specific, and many inhibitory strains exhibited broad-spectrum activity. Strains with antifungal activity against several conifer root pathogens were also more likely to inhibit multiple species of clinical bacterial pathogens.Key words: in vitro, antimicrobial, conifer rhizosphere.


Sign in / Sign up

Export Citation Format

Share Document