scholarly journals Control of Bacterial Wilt of Geranium with Phosphorous Acid

Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 798-802 ◽  
Author(s):  
D. J. Norman ◽  
J. Chen ◽  
J. M. F. Yuen ◽  
A. Mangravita-Novo ◽  
D. Byrne ◽  
...  

Various bactericides were screened for efficacy in protecting geranium plants (Pelargonium hortorum) from Ralstonia solanacearum infection. Many of these bactericides were found to slow the disease progress; however, they were not able to protect the plants from infection and subsequent death. Potassium salts of phosphorous acid were found to be effective in protecting plants from infection when applied as a drench. The active portion of the potassium salts was found to be phosphorous acid (H3PO3). Phosphorous acid was found to inhibit in vitro growth of R. solanacearum. It is thought to be protecting plants from infection by acting as a bacteriostatic compound in the soil. The plants, however, are not protected from aboveground infection on wounded surfaces. Phosphorous acid drenches were shown to protect geranium plants from infection by either race 1 or 3 of R. solanacearum. Other phosphorous-containing products commonly used in the industry, such as phosphorus pentoxide (P2O5) and phosphoric acid (H3PO4), were not able to protect plants from bacterial wilt infection.

2019 ◽  
Vol 2 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Rachmad Saputra ◽  
Triwidodo Arwiyanto ◽  
Arif Wibowo

Streptomyces sp. bacteria have the potential to produce antibiotic compounds, which are one of the mechanisms that are widely used in biological control. However, in general, biological control mechanisms also occur through competition, cell wall degradation and induced resistance. This study was aimed to determine the physiological, biochemical and molecular characteristics of two isolates of Streptomyces sp. (S-4 and S16 isolates) isolated from the tomatoes roots, and to find out their ability to control Ralstonia solanacearum, which causes bacterial wilt disease on a wide range of hosts. The results showed both Streptomyces sp. isolates had several different physiological and biochemical characteristics and had a different ability to inhibit R. solanacearum in vitro. Streptomyces sp. S-16 isolate had a high similarity with Streptomyces diastaticus subsp. ardesiacus strain NRRL B-1773T based on the molecular identification results. Further research needs to be done to see the potential inhibition of the two Streptomyces isolates in inhibiting the development of bacterial wilt disease in tomato plants caused by R. solanacearum.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Namisy ◽  
Chen ◽  
Prohens ◽  
Metwally ◽  
Elmahrouk ◽  
...  

Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.


2018 ◽  
Vol 36 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Maurício Rossato ◽  
Thais R. Santiago ◽  
Carlos Alberto Lopes

ABSTRACT In Brazil, the bacterial pathogens Ralstonia solanacearum and R. pseudosolanacearum cause substantial losses by inducing bacterial wilt on several solanaceous crops; R. pseudosolanacearum is the main species associated with peppers (Capsicum sp.). To verify the bacterial wilt reaction on Capsicum peppers commercialized in the Federal District (DF), fruits of several genotypes within this genus were collected from six different fairs distributed in the satellite cities of Gama, Sobradinho and Guará. Seedlings with four true leaves derived from seeds extracted from such fruits were root inoculated with 108 CFU/mL with a representative isolate of R. pseudosolanacearum (race 1, biovar 3, phylotype I, sequevar 18). The evaluated species were: Capsicum frutescens (‘pimenta-malagueta’), Capsicum baccatum var. pendulum (‘pimenta-dedo-de-moça’) and C. chinense (‘pimenta-de-bode’ red and yellow, ‘pimenta-cumarí-do-Pará’, ‘pimenta-biquinho’, ‘pimenta-habanero’ and ‘pimenta-de-cheiro’). Not all species were found in all six fairs. The reaction to bacterial wilt was variable and species-dependent. From 26 evaluated genotypes, none presented an immune-like response, 10 were considered resistant and 16 susceptible based on wilt incidence (Scott-Knott, 5%). Four Capsicum baccatum accesses were positioned in the resistant group, whereas 14 out of 18 of C. chinense were susceptible. Capsicum frutescens showed variable reactions. These results contribute to indicate cultivation of specific groups of pepper according to the presence of the pathogen in the soil.


2018 ◽  
Vol 31 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Haibin Lu ◽  
Saul Lema A ◽  
Marc Planas-Marquès ◽  
Alejandro Alonso-Díaz ◽  
Marc Valls ◽  
...  

The causal agent of bacterial wilt, Ralstonia solanacearum, is a soilborne pathogen that invades plants through their roots, traversing many tissue layers until it reaches the xylem, where it multiplies and causes plant collapse. The effects of R. solanacearum infection are devastating, and no effective approach to fight the disease is so far available. The early steps of infection, essential for colonization, as well as the early plant defense responses remain mostly unknown. Here, we have set up a simple, in vitro Arabidopsis thaliana–R. solanacearum pathosystem that has allowed us to identify three clear root phenotypes specifically associated to the early stages of infection: root-growth inhibition, root-hair formation, and root-tip cell death. Using this method, we have been able to differentiate, on Arabidopsis plants, the phenotypes caused by mutants in the key bacterial virulence regulators hrpB and hrpG, which remained indistinguishable using the classical soil-drench inoculation pathogenicity assays. In addition, we have revealed the previously unknown involvement of auxins in the root rearrangements caused by R. solanacearum infection. Our system provides an easy-to-use, high-throughput tool to study R. solanacearum aggressiveness. Furthermore, the observed phenotypes may allow the identification of bacterial virulence determinants and could even be used to screen for novel forms of early plant resistance to bacterial wilt.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 687-692 ◽  
Author(s):  
Péninna Deberdt ◽  
Benjamin Perrin ◽  
Régine Coranson-Beaudu ◽  
Pierre-François Duyck ◽  
Emmanuel Wicker

To control bacterial wilt (Ralstonia solanacearum, phylotype IIB/4NPB), the antimicrobial effect of Allium fistulosum aqueous extract was assessed as a preplant soil treatment. Three concentrations of extract (100, 50, and 25%, 1:1 [wt/vol]) were evaluated by in vitro inhibition assay and in vivo experiments in a growth chamber. In vitro, A. fistulosum (100 and 50%) suppressed growth of R. solanacearum. Preplant treatment of the soil with A. fistulosum extract significantly reduced the R. solanacearum populations. No pathogen was detected in the soil after treatment with 100% concentrated extract from the third day after application until the end of the experiment. A. fistulosum also significantly reduced the incidence of tomato bacterial wilt. In the untreated control, the disease affected 61% of the plants whereas, with 100 and 50% extracts, only 6 and 14% of the plants, respectively, were affected. These results suggest that A. fistulosum extracts could be used in biocontrol-based management strategies for bacterial wilt of tomato.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 372-372 ◽  
Author(s):  
A. T. Thera ◽  
B. J. Jacobsen ◽  
O. T. Neher

Ralstonia solanacearum (Smith) Yabuuchi et al. causes bacterial wilt worldwide on a wide range of plant species. In Mali, the disease is commonly found on potato (Solanum tuberosum L.), tomato (Lycopersicon esculentum var. esculentum L.), pepper (Capsicum annuum L.), eggplant (Solanum melongena L.), tobacco (Nicotiana tabacum L.), and peanut (Arachis hypogaea L.). Determination of race and biovar is critical for development of potato seed certification programs for management of the disease. Isolates (25) of R. solanacearum were obtained from wilting potato, pepper, eggplant, tobacco, and tomato plants collected from fields near Baguineda, Sonityeni, Sotuba, Sikasso, and Kolikoro. Isolations were made from bacterial streaming by dilution plating on triphenyl tetrazolium chloride medium (TZC) (2). Characteristic colonies were selected and identified by ELISA or Immunostrips (Pathoscreen Rs, Agdia Inc., Elkhart, IN). These isolates were used in host range studies and hypersensitivity (HR) tests on tobacco (cv. xanthi) (3) and tested for their ability to produce acids on Ayers basal media amended with disaccharide and hexose alcohol carbon sources (1). These isolates caused characteristic wilt 40 days postinoculation on greenhouse-grown tobacco (cv. Xanthi), peanut (cv. 4610), and tomato (cv. Roma VF) plants when stems of five plants of each host were syringe inoculated with 0.1 ml of a 1 × 109 CFU/ml of bacteria. Plants inoculated with sterile distilled water remained symptomless and R. solanacearum was reisolated from infected plants on TZC and identified with Immunostrips. All HR tests were negative. Infection of peanut, tobacco, and tomato and the results of the HR tests indicated that all isolates were Race 1 and no significant variation was noted between isolates. Acid was produced from the hexose alcohols: mannitol, sorbitol, and dulcitol; and the disaccharides: cellobiose, lactose, and maltose. This indicated that all isolates were biovar 3, the same as a known Race 1 strain from tobacco (MSU Plant Pathology teaching collection) (1). To assess relative distribution of R. solanacearum, 20 soil samples collected from potato fields in the vicinity of Baguineda, Kati, Koulikoro, and Sikasso were placed in pots (30 × 25 cm) under shade cloth at the IER Station in Sotuba and planted with 30-day-old tobacco plants. After 90 days, infected plants (35 to 100% infection) were found in all soils. Infected plants exhibited classical wilt symptoms and tested positive for R. solanacearum infections as confirmed by Immunostrip tests. Six of nine surface water samples taken near potato fields in Baguineda, Sikasso, Mopti, and Koulikoro tested positive for the presence of R. solanacearum by an Agdia Inc. enrichment kit and ELISA. A weed, Commelina forskalaei (Vahl), collected by Farako creek near Sikasso tested positive in the Immunostrip test even though no symptoms were obvious. No attempt was made to characterize the race, biovar, or phylotype of the soil, water, and weed isolates. To our knowledge, this is the first time that the race and biovar of R. solanacearum from Mali has been reported and the wide distribution of this pathogen in Malian soils and surface water has been demonstrated. It is significant that we did not detect Race 3 biovar 2, which is subject to quarantine and biosecurity regulations. References: (1) A. C. Hayward. J. Bacteriol. 27:265, 1964. (2) A. Kelman. Phytopathology 44:693, 1954. (3) J. Lozano and L. Sequeira. Phytopathology 60:833, 1970.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Sabry A. Hassan

Abstract Background Bacterial wilt of tomato (BWP) caused by Ralstonia solanacearum (Smith) is a very important disease. Biological control of this disease is a very important tool to protect the plant and environment from pollution of chemical control. Results Twenty isolates of genus, Pantoea were isolated from healthy tomato root. Out of 20 isolates, 2 strains, PHYTPO1 and PHYTPO2, showed highly antagonistic property to control the growth of R. solanacearum in vitro conditions. They were identified as P. agglomerans by using 16S rRNA nucleotide sequence analysis. The 2 isolates were selected to study their effect (as cell suspension or culture filtrate) on the bacterial wilt under greenhouse conditions. PHYTPO1 inhibited maximum growth reduction of R. solanacearum and formed 2.5 cm2 of inhibition zone, followed by 1.2 cm2 in PHYTOPO2 under in vitro conditions. Treating with both isolates of P. agglomerans was significantly reduced disease severity of tomato wilt disease. The disease severity was reduced to 74.1 when treated as cell suspension, while when treated as culture filtrate, it reduced the disease severity up to 69.4 than infected control. Conclusion The strains of Pantoea can be used as an ecofriendly method to control of the most economic pathogen of tomato under greenhouse conditions. Further study is needed to find an appropriate formulation and approving application of these bacteria under field conditions.


2021 ◽  
Vol 39 (4) ◽  
pp. 411-416
Author(s):  
Carlos A Lopes ◽  
Agnaldo DF Carvalho ◽  
Arione S Pereira ◽  
Fernanda Q Azevedo ◽  
Caroline M Castro ◽  
...  

ABSTRACT Bacterial wilt (BW), or brown rot, caused by the soil and seed borne bacterium Ralstonia solanacearum, is one of the most devastating diseases of potatoes cultivated in warmer regions of the world. There are no potato cultivars with a desirable level of BW resistance, although it has been recognized that resistance can be an outstanding component for disease management. However, the sources of resistance available lack agronomic traits required by potato growers, therefore being of little interest to breeders. The objective of this work was to evaluate the performance of 11 clones selected for BW resistance and improved for tuber traits upon selection in the last two decades. The clones under test were compared with susceptible and resistant clones and cultivars, in a completely randomized blocks design with three replications of single lines of 10 plants, in a field naturally infested with race 1, biovar 1, phylotype II of R. solanacearum. BW incidence was assessed 60-70 days after planting and total tuber yield in each plot was recorded 110 days after planting. All the evaluated clones presented higher levels of resistance to BW compared with the commercial varieties, not differing from the resistant, not commercial, controls. In a next step, these clones will be characterized for other desirable traits and those which combine high level of resistance and commercial characteristics will be recommended for breeders for enriching the genotypic background in the search for commercial varieties. We also confirmed that the cultivar BRSIPR Bel displays an intermediate level of resistance, what makes it an interesting genitor for its good agronomic characteristics. The findings of this work demonstrate that the improved potato clones selected under tropical conditions in the Embrapa’s pre-breeding project possess high and stable levels of resistance to bacterial wilt, being a valuable resource for breeders.


Sign in / Sign up

Export Citation Format

Share Document