scholarly journals Physalis angulata: A New Natural Host of Tomato chlorosis virus in Brazil

Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 692-692 ◽  
Author(s):  
M. E. N. Fonseca ◽  
L. S. Boiteux ◽  
H. Abreu ◽  
I. Nogueira ◽  
R. C. Pereira-Carvalho

Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are the two Solanaceae-infecting Crinivirus species (family Closteroviridae) of worldwide importance. In Brazil, only ToCV has been detected under natural conditions infecting tomato (Solanum lycopersicum), sweet pepper (Capsicum annuum), and potato (S. tuberosum), causing foliar chlorosis (1, 3). However, there are no formal reports of alternative weed hosts of ToCV. During crop surveys in Capão Bonito, São Paulo State, Brazil (May 2011), a high incidence (above 20%) of plants of the weed, cut leaf ground cherry (Physalis angulata L.) growing around and within a tomato (cv. Alambra) field with a high incidence of ToCV, were found displaying interveinal chlorosis on the lower leaves, similar to those induced by magnesium deficiency. The P. angulata plants also had high populations of whiteflies (Bemisia tabaci biotype B). Ten leaf samples were taken from individual symptomatic ground cherry and tomato plants for Crinivirus testing. Total nucleic acids were extracted from 2 g of symptomatic and healthy leaf tissues of both hosts using Whatman CF-11 cellulose (Sigma) as described (4). The purified double stranded RNA samples were used as a template in reverse transcription (RT)-PCR using specific primers targeting the p22 gene region in the genome of ToCV (2). Only the 566-bp ToCV-specific amplicon was detected in all field samples. Sequences of samples from the P. angulata and tomato cDNA amplicons were identical to each other (GenBank Accession No. JX187514) and they showed 99% identity with the ToCV RNA 1 from a tomato isolate from Florida (AY903447). This confirmed the initial hypothesis of Crinivirus infection. Cuttings of symptomatic P. angulata plants were also obtained and kept in a voile cage under greenhouse conditions together with healthy seedlings of P. angulata and the begomovirus-resistant inbred tomato line ‘TX-468RG.’ Fifty aviruliferous B. tabaci (biotype B) adults were placed in the cage. Similar symptoms were observed 50 days after exposure to whiteflies in both hosts. Transmission to P. angulata and to ‘TX-468RG’ was also confirmed via sequencing of ToCV-specific amplicon, demonstrating the infectivity of the isolate to both hosts. To our knowledge, this is the first report of P. angulata as a natural host of ToCV in Brazil. This weed is often present in the commercial fields because of its natural tolerance to herbicides currently used in tomato production. The ToCV-infected P. angulata plants might serve as alternative sources of inoculum for the surrounding tomato fields. The environmental persistence of P. angulata combined with its intense whitefly colonization might allow a year-round ToCV exposure for tomato plants under field conditions in this major production area of Brazil where at least 25 million tomato plants are cultivated annually. References: (1) J. C. Barbosa et al. Trop. Plant Pathol. 36: 256, 2011. (2) M. I. Font et al. Plant Dis. 86:696, 2002. (3) D. M. S. Freitas et al. Plant Dis. 96:593, 2012. (4) R. A. Valverde et al. Plant Dis. 74:285, 1990.

2020 ◽  
Vol 24 (1) ◽  
pp. 98
Author(s):  
Tri Retno Widyastuti ◽  
Sri Sulandari ◽  
Sedyo Hartono ◽  
Triwidodo Arwiyanto

Grafting methods on tomato have been done to reduce the infection rate of various pathogens. Begomovirus and Crinivirus are important viruses in tomato plants. The research aimed to determine the resistance response of tomato plants to viral infection, and tomato production. Field research was conducted in Harjobinangun, Pakem, Sleman, Yogyakarta in the endemic area of the viral diseases transmitted by Bemisia tabaci. This experiment used a Completely Randomized Design non-factorial with “Servo” as scion and “Amelia”, “H-7996”, “Mawar” as rootstock. The disease development, presence of viral diseases, and tomato yields were observed. PCR detection using Krusty & Hommr primer successfully amplified Begomovirus DNA bands with an approximate size of 580 bp in tomato plant with interveinal chlorosis, curling, thick, rigid, and stunt symptoms. Chlorotic spots and yellowing symptoms successfully amplified using ToCV-CF/ToCV-CR specific primer for the amplification of Tomato chlorosis virus with DNA band approximately size of 360 bp, whereas using TICV-CF/TICV-CR specific primer could not amplify the virus cDNA. The leaves roll upward with purple interveinal symptoms that were not infected by both viruses. Both viral infections affected the quality of the fruit which indicated by a higher number of abnormal fruits. “Servo” grafted onto “Amelia” and non-grafted Servo were tolerant to viral infection, “Servo” grafted onto “H-7996” or to “Mawar variety were susceptible to viral infection, self-grafted Servo were very susceptible to viral infection. 


2020 ◽  
Vol 12 (12) ◽  
pp. 1920
Author(s):  
Antonios Morellos ◽  
Georgios Tziotzios ◽  
Chrysoula Orfanidou ◽  
Xanthoula Eirini Pantazi ◽  
Christos Sarantaris ◽  
...  

Tomato chlorosis virus (ToCV) is a serious, emerging tomato pathogen that has a significant impact on the quality and quantity of tomato production worldwide. Detecting ToCV via means of spectral measurements in an early pre-symptomatic stage offers an alternative to the existing laboratory methods, leading to better disease management in the field. In this study, leaf spectra from healthy and diseased leaves were measured with a spectrometer. The diseased leaves were subjected to RT-qPCR for the detection and quantification of the titer of ToCV. Neighborhood component analysis (NCA) algorithm was employed for the feature selection of the effective wavelengths and the most important vegetation indices out of the 24 that were tested. Two machine learning methods, namely XY-fusion network (XY-F) and multilayer perceptron with automated relevance determination (MLP–ARD), were employed for the estimation of the disease existence and viral load in the tomato leaves. The results showed that before outlier elimination, the MLP–ARD classifier generally outperformed the XY-F network with an overall accuracy of 92.1% against 88.3% for the XY-F. Outlier elimination contributed to the performance of the classifiers as the overall accuracy for both XY-F and MLP–ARD reached 100%.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 600-607 ◽  
Author(s):  
Ya-Chi Kang ◽  
Yun-Chi Wang ◽  
Chun-Ming Hsia ◽  
Wen-Shi Tsai ◽  
Li-Hsin Huang ◽  
...  

The whitefly-transmitted tomato chlorosis virus (ToCV) belonging to the genus Crinivirus (family Closteroviridae) affects tomato production worldwide. ToCV was first recorded in Taiwan in 1998 affecting tomato production. In this study, a local virus isolate XS was obtained, after serial whitefly transmissions from a diseased tomato plant displaying general chlorosis were collected in central Taiwan. The whole genome sequence of XS was determined from cDNA fragments amplified by reverse transcription (RT)-PCR, first using the degenerate primers for viruses of Closteroviridae and followed by degenerate and specific primers designed on available sequences of the ToCV isolates. The nucleotide (nt) sequences of RNA-1 and RNA-2 of the XS shared low identities of 77.8 to 78% and 78 to 78.1%, respectively, with genome segments of other ToCV isolates. Nevertheless, the viral RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homolog (Hsp70h), and major capsid protein (CP) shared 88.3 to 96.2% amino acid (aa) identities with other ToCV isolates, indicating that XS is a new strain of this virus. Phylogenetic analyses of these three proteins indicated that all ToCV isolates from different counties outside Taiwan are closely related and clustered in the same clade, whereas the XS isolate is distinct and forms a unique branch. A one tube RT-PCR assay using primers designed from the genomic sequence of the XS was able to detect the ToCV-XS in infected tomato plants and in individual whiteflies. A field survey during 2013 to 2016 revealed a high ToCV-XS prevalence of 60.5% in 172 tested tomato samples, demonstrating that ToCV-XS is becoming an emerging threat for tomato production in Taiwan.


2006 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
S. N. Rampersad

Tomato production in Trinidad has suffered considerable losses in yield and fruit quality due to infections of hitherto surmised etiology. In order to develop strategies for controlling viral diseases in tomato, the relative distribution and incidence of seven viruses that commonly infect tomato were determined. Of the 362 samples tested, Potato yellow mosaic Trinidad virus (PYMTV) was found in every farm except two and was present at relatively high incidence throughout the country. Tobacco mosaic virus (TMV) and Tobacco etch virus (TEV) were found in fewer farms and at lower incidences while the other viruses were absent. Single infections of either virus were more common than double infections and multiple infections were rare but present. The results indicated that PYMTV is the predominant and most important viral pathogen in tomato production systems in Trinidad; however, begomovirus disease management strategies will also have to accommodate controls Accepted for publication 10 January 2006. Published 9 March 2006.


2020 ◽  
Vol 18 (4) ◽  
pp. e10SC05
Author(s):  
Ivana Stankovic ◽  
Ana Vucurovic ◽  
Katarina Zecevic ◽  
Branka Petrovic ◽  
Danijela Ristic ◽  
...  

Aim of study: To report the occurrence of Pepino mosaic virus (PepMV) on tomato in Serbia and to genetically characterize Serbian PepMV isolates.Area of study: Tomato samples showing virus-like symptoms were collected in the Bogojevce locality (Jablanica District, Serbia).Material and methods: Collected tomato samples were assayed by DAS-ELISA using antisera against eight economically important or quarantine tomato viruses. Three selected isolates of naturally infected tomato plants were mechanically transmitted to tomato ‘Novosadski jabučar’ seedlings. For confirmation of PepMV infection, RT-PCR was performed using specific primers PepMV TGB F/PepMV UTR R. Maximum-likelihood phylogenetic tree was constructed with 47 complete CP gene sequences of PepMV to determine the genetic relationship of Serbian PepMV isolates with those from other parts of the world.Main results: The results of DAS-ELISA indicated the presence of PepMV in all tested samples. Mechanically inoculated ‘Novosadski jabučar’ seedlings expressed yellow spots and light and dark green patches, bubbling, and curled leaves. All tested tomato plants were RT-PCR positive for the presence of PepMV. The CP sequence analysis revealed that the Serbian PepMV isolates were completely identical among themselves and shared the highest nucleotide identity of 95.1% (99.2% aa identity) with isolate from Spain (FJ263341). Phylogenetic analysis showed clustering of the Serbian PepMV isolates into CH2 strain, but they formed separate subgroup within CH2 strain.Research highlights: This is the first data of the presence of PepMV in protected tomato production in Serbia. Considering increased incidence and rapid spread in Europe, the presence of PepMV on tomato could therefore represent serious threat to this valuable crop in Serbia.


2021 ◽  
Author(s):  
Wendy Marchant ◽  
Saurabh Gautam ◽  
Bhabesh Dutta ◽  
Rajagopalbab Srinivasan

Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (“variant #2” and “variant #4”) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants’ concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than variant#2 in tomato plants. Despite differences in variants’ accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly-infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.


2019 ◽  
Vol 109 (3) ◽  
pp. 480-487 ◽  
Author(s):  
Gabriel Madoglio Favara ◽  
Daiana Bampi ◽  
Juan Pablo Edwards Molina ◽  
Jorge Alberto Marques Rezende

Tomato severe rugose virus (ToSRV) and Tomato chlorosis virus (ToCV) are among the major viruses that affect tomato (Solanum lycopersicum) development and yield in Brazil. ToSRV and ToCV are transmitted in a persistent circulative and semipersistent manner, respectively, by the whitefly Bemisia tabaci Middle East-Asia Minor 1, considered the main vector of these viruses. In this study, the kinetics of systemic invasion and the latent and incubation periods of ToSRV and ToCV were evaluated in singly and doubly infected tomato plants. Both viruses moved systemically into tomato plants as early as 1 day after inoculation. The mean ToCV latent periods in single infections and co-infections with ToSRV were 13 and 11 days, respectively, while incubation periods in single and co-infections were, on average, 30 and 31 days, respectively. For ToSRV, the mean latent period was 7 days in single infections and 6 days in co-infections with ToCV. Incubation periods were, on average, 18 and 17 days in single and co-infections, respectively. Because latent periods for both viruses were shorter than their respective incubation periods, field-infected tomato plants may act as sources of inocula soon after infection and before onset of symptoms.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 350
Author(s):  
Francisco Albornoz ◽  
Adriana Nario ◽  
Macarena Saavedra ◽  
Ximena Videla

The use of grafting techniques for horticultural crops increases plant tolerance to various abiotic and biotic stresses. Tomato production under greenhouse conditions relies on plants grafted onto vigorous rootstocks because they sustain crops for longer periods. Growers under Mediterranean conditions usually grow crops in passive greenhouses during the summer and winter season, to provide fresh products throughout the year. No information is available with regard to the effect of the environment on nitrogen-use efficiency (NUE) in tomato plants grafted onto rootstocks with different vigor. In the present study, NUE, along with its components—uptake (NUpE) and utilization (NUtE) efficiencies—were evaluated in tomato plants grafted onto two interspecific rootstocks, conferring medium (“King Kong”) or high (“Kaiser”) vigor to the plants. The evaluations were carried out during the vegetative and reproductive stage in plants subjected to different environmental conditions resulting in different plant growth rates. The grafting treatments did not affect NUE, NUpE or NUtE in young plants, but at the reproductive stage, differences were found during the summer season (high N demand) where the vigorous rootstock increased NUpE from 55%, in non-grafted plants, to 94%, with the consequent differences in NUE. During the winter crop, no differences in NUE were found between the vigorous rootstock and non-grafted plants, but the less vigorous (cold-tolerant) rootstock enhanced NUpE. Significant positive relationships were found between plant growth rate and both NUE and NUpE, while NUtE decreased with increasing growth rate.


Sign in / Sign up

Export Citation Format

Share Document