MYELOMA LIGHT CHAINS INDUCE EPITHELIAL-MESENCHYMAL TRANSITION IN HUMAN RENAL PROXIMAL TUBULE EPITHELIAL CELLS: A POTENTIAL ROLE IN RENAL FIBROSIS AND POSSIBLE INTERVENTION BY BONE MORPHOGENETIC PROTEIN 7 AND PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE.

2007 ◽  
Vol 55 (1) ◽  
pp. S291-S292
Author(s):  
M. Li ◽  
K. Hering-Smith ◽  
E. E. Simon ◽  
V. Batuman
2016 ◽  
Vol 5 (3) ◽  
pp. 931-937 ◽  
Author(s):  
Yan Wang ◽  
Di Liang ◽  
Zhonghui Zhu ◽  
Xiaoli Li ◽  
Guoliang An ◽  
...  

Silica induced EMT and decreased the expression of BMP-7 in vivo and in vitro, while exogenous BMP-7 promoted MET and inhibited silica-induced EMT associated with inhibition of the p38 MAPK/transcription factor (TF) signaling pathway in RLE-6TN cells.


2021 ◽  
Vol 22 (19) ◽  
pp. 10252
Author(s):  
Rohan Reddy Nagavally ◽  
Siddharth Sunilkumar ◽  
Mumtaz Akhtar ◽  
Louis D. Trombetta ◽  
Sue M. Ford

Cyclosporine A (CsA) is a nephrotoxicant that causes fibrosis via induction of epithelial–mesenchymal transition (EMT). The flavonoid chrysin has been reported to have anti-fibrotic activity and inhibit signaling pathways that are activated during EMT. This study investigated the nephroprotective role of chrysin in the prevention of CsA-induced renal fibrosis and elucidated a mechanism of inhibition against CsA-induced EMT in proximal tubule cells. Treatment with chrysin prevented CsA-induced renal dysfunction in Sprague Dawley rats measured by blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Chrysin inhibited CsA-induced tubulointerstitial fibrosis, characterized by reduced tubular damage and collagen deposition. In vitro, chrysin significantly inhibited EMT in LLC-PK1 cells, evidenced by inhibition of cell migration, decreased collagen expression, reduced presence of mesenchymal markers and elevated epithelial junction proteins. Furthermore, chrysin co-treatment diminished CsA-induced TGF-β1 signaling pathways, decreasing Smad 3 phosphorylation which lead to a subsequent reduction in Snail expression. Chrysin also inhibited activation of the Akt/ GSK-3β pathway. Inhibition of both pathways diminished the cytosolic accumulation of β-catenin, a known trigger for EMT. In conclusion, flavonoids such as chrysin offer protection against CsA-induced renal dysfunction and interstitial fibrosis. Chrysin was shown to inhibit CsA-induced TGF-β1-dependent EMT in proximal tubule cells by modulation of Smad-dependent and independent signaling pathways.


2015 ◽  
Vol 35 (1) ◽  
pp. 69-77 ◽  
Author(s):  
G Yang ◽  
Z Zhu ◽  
Y Wang ◽  
A Gao ◽  
P Niu ◽  
...  

The epithelial–mesenchymal transition (EMT) is a critical process in the pulmonary fibrosis. It has been reported that bone morphogenetic protein 7 (BMP-7) was able to reverse EMT in proximal tubular cells. Therefore, we test the hypothesis that EMT contributes to silica-induced pulmonary fibrosis and BMP-7 inhibits EMT in silica-induced pulmonary fibrosis. Progressive silica-induced pulmonary fibrosis in the rat was used as a model of silicosis. Epithelial and mesenchymal markers were measured from rat fibrotic lungs. Then the effects of BMP-7 on the EMT were further confirmed in A549 cells. There are increases of vimentin as a mesenchymal marker and decreases of E-cadherin as an epithelial marker in the silica-exposed rat lungs, which is in agreement with the A549 cells data. However, BMP-7 treatment significantly reduced expression of vimentin in the rat pulmonary fibrosis model and in A549 cells. In conclusion, EMT contributes to silica-induced pulmonary fibrosis. Meanwhile, the treatment of BMP-7 can inhibit silica-induced EMT in vitro and in vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Seonghun Kim ◽  
Cheol-Hee Jeong ◽  
Sang Hyun Song ◽  
Jo Eun Um ◽  
Hyun Sil Kim ◽  
...  

Tubulointerstitial renal fibrosis is a chronic disease process affecting chronic kidney disease (CKD). While the etiological role of transforming growth factor-beta (TGF-β) is well known for epithelial–mesenchymal transition (EMT) in chronic kidney disease, effective therapeutics for renal fibrosis are largely limited. As a member of the TGF-β superfamily, bone morphogenetic protein-7 (BMP-7) plays an important role as an endogenous antagonist of TGF-β, inhibiting fibrotic progression in many organs. However, soluble rhBMP-7 is hardly available for therapeutics due to its limited pharmacodynamic profile and rapid clearance in clinical settings. In this study, we have developed a novel therapeutic approach with protein transduction domain (PTD) fused BMP-7 in micelle (mPTD-BMP-7) for long-range signaling in vivo. Contrary to rhBMP-7 targeting its cognate receptors, the nano-sized mPTD-BMP-7 is transduced into cells through an endosomal pathway and secreted to the exosome having active BMP-7. Further, transduced mPTD-BMP-7 successfully activates SMAD1/5/8 and inhibits the TGF-β–mediated epithelial–mesenchymal transition process in vitro and in an in vivo unilateral ureter obstruction model. To determine the clinical relevance of our strategy, we also developed an intra-arterial administration of mPTD-BMP-7 through renal artery in pigs. Interestingly, mPTD-BMP-7 through renal artery intervention effectively delivered into Bowman’s space and inhibits unilateral ureter obstruction–induced renal fibrosis in pigs. Our results provide a novel therapeutic targeting TGF-β–mediated renal fibrosis and other organs as well as a clinically available approach for kidney.


2021 ◽  
Vol 19 (4) ◽  
pp. 501-507
Author(s):  
Yunhe Gu ◽  
Peiyao Guo ◽  
Guangbiao Xu

Transforming growth factor-β1 promotes excessive extracellular matrix deposition and epithelial-mesenchymal transition of tubular epithelial cells, thus stimulating the progression of renal fibrosis. Carvacrol has been shown to alleviate cardiac and liver fibrosis and attenuate renal injury. However, the role of carvacrol on renal fibrosis has not been examined. First, measurements using Cell Counting Kit-8 showed that carvacrol reduced cell viability of tubular epithelial cell line HK-2 in a dose-dependent fashion. Second, transforming growth factor-β1 induced excessive extracellular matrix deposition in HK-2 cells with enhanced collagen I, collagen IV, and fibronectin expression. However, carvacrol decreased the expression of collagen I, collagen IV in a dose-dependent manner and fibronectin to attenuate the extracellular matrix deposition in HK-2. Third, carvacrol attenuated TGF-β1-induced decrease of E-cadherin and increase of snail, vimentin, and alpha-smooth muscle actin in HK-2 cells. Transforming growth factor-β1-induced increase in PI3K and AKT phosphorylation in HK-2 were also reversed by carvacrol. Collectively, carvacrol ameliorates renal fibrosis through inhibition of transforming growth factor-β1-induced extracellular matrix deposition and epithelial-mesenchymal transition of HK-2 cells, providing potential therapy for the treatment of renal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document